
The Best of  
SQLServerCentral.com 
Vol 7

High Performance SQL Server

ISBN: 978-1-906434-35-9



The Best of SQLServerCentral.com – Vol.7 

 

The Best of SQLServerCentral.com - 
Vol.7 

 

Aaron Akin 
Adam Aspin 
Adam Haines 

Alceu Rodrigues de Freitas Junior 
Bennie Haelen 
Bill Richards 
Boyan Penev 
Brian Kelley 
Chad Miller 
Chris Kinley 
David Dye 

David McKinney 
David Poole 

Deepa Gheewala 
Divya Agrawal 

Drew Salem 
Francis Rodrigues 

Gail Shaw 
Glen Cooper 

Glen Schwickerath 
Gregor Borosa 

Gus "GSquared" Gwynne 
Ian Stirk 

Jack Corbett 
Jacob Sebastian 

Jagan Kumar 
Jason Shadonix 

Joe Celko 
Johan Bijnens 

Jonathan Kehayias 

Ken Simmons 
Ladislau Molnar 
Lanre Famuyide 

Louis Roy 
Marios Philippopoulos 

Martin Cremer 
Michael Cape 

Michelle Ufford 
Mike Walsh 

Nicholas Cain 
Oleg Netchaev 

Paul Els 
Phil Factor 

Ranga Narasimhan 
R. Barry Young 

Renato Buda 
Robert Cary 
Roy Ernest 

Rudy Panigas 
Soloman Rutzky 

Sylvia Moestl Vasilik 
Thom Bolin 
Tim Mitchell 

Thomas LaRock 
Timothy A Wiseman 

TJay Belt 
Vincent Rainardi 
Wagner Crivelini 
Wayne Sheffield 

Zach Mattson 
 



The Best of SQLServerCentral.com – Vol.7 

 

The Best of 
SQLServerCentral.com – Vol. 7 

Red Gate Books 
Newnham House 

Cambridge Business Park 
Cambridge 
CB2 0WZ 

United Kingdom 
 

ISBN 978-1-906434-35-9 

Copyright Notice 

Copyright 2009 by Simple Talk Publishing. All rights reserved. Except as permitted 
under the Copyright Act of 1976, no part of this publication may be reproduced under 
the Copyright Act of 1976. No part of this publication may be reproduced in any form 
or by any means or by a database retrieval system without the prior written consent of 
The Central Publishing Group. The publication is intended for the audience of the 
purchaser of the book. This publication cannot be reproduced for the use of any other 
person other than the purchaser. Authors of the material contained in this book retain 
copyright to their respective works. 

Disclaimer 

The Simple-Talk Publishing, SQLServerCentral.com, and the authors of the articles 
contained in this book are not liable for any problems resulting from the use of 
techniques, source code, or compiled executables referenced in this book. Users should 
review all procedures carefully, test first on a non-production server, and always have 
good backup before using on a production server. 

Trademarks 

Microsoft, SQL Server, Windows, and Visual Basic are registered trademarks of 
Microsoft Corporation, Inc. Oracle is a trademark of Oracle Corporation. 

Editors 

Steve Jones  

Cover Art 

Matthew Tye 

Typeset 

Alice Smith 
 



The Best of SQLServerCentral.com – Vol.7 

iii 
 

Table of Contents 
Introduction .................................................................................................. 6 

SQL Server Preproduction Tasks................................................................. 7 

Scope: The drastic caveat with Logon Triggers........................................... 10 

The Date Dimension in Analysis Services ................................................... 15 

SCOME - Centralize Monitoring with ASP.NET - Part 1 ........................... 22 

Monitoring Changes in Your Database Using DDL Triggers ..................... 27 

Imaginative Auditing with Rollback (Undo) and RollForward 
(Redo) Part I................................................................................................. 30 

9 Things to Do When You Inherit a Database ............................................. 33 

Cursors for T-SQL Beginners ...................................................................... 36 

DAC - What to Execute when Connected? .................................................. 42 

Getting a Clue about Your Databases .......................................................... 43 

Ordering Tables to Preserve Referential Integrity ....................................... 47 

Creating a recycle bin for SQL Server 2005\2008 ....................................... 52 

Using SQL Profiler to Resolve Deadlocks in SQL Server .......................... 62 

What SQL Statements Are Currently Executing?........................................ 67 

Duplicate Records using SQLCMD ............................................................. 70 

Automating Excel from SQL Server ............................................................ 75 

Moving Indexes ........................................................................................... 80 

On Indexes and Views ................................................................................. 85 

Missing Indexes in SQL Server 2005 .......................................................... 89 

Using the Script Component with Multiple Outputs ................................... 91 

SSIS and Stored procedures using temp tables ............................................ 99 



The Best of SQLServerCentral.com – Vol.7 

iv 
 

SSIS Custom Error Handling ....................................................................... 105 

Simple Steps to Creating SSIS Package Configuration File ........................ 110 

Using Checkpoints in SSIS (Part 1) ............................................................. 117 

Reporting Services: Read Data from SSAS and SQL Server in 
One Dataset .................................................................................................. 121 

SQL Server 2008 Mirroring Testing ............................................................ 135 

On-Call Duties ............................................................................................. 140 

Configuring Replication for Partitioned Tables Using T-SQL .................... 143 

Performance Implications of Database Snapshots ....................................... 147 

Filtering Unneeded Dimension Members in PerformancePoint 
Filters ........................................................................................................... 151 

Powering up DTS with PerlDTS.................................................................. 153 

Loading Data with Powershell ..................................................................... 159 

Add Styles to Your Reporting Services Reports .......................................... 165 

Configuring Kerberos Authentication .......................................................... 171 

Use Operations Manager to Monitor Your SQL Agent Jobs ....................... 177 

Oracle for the SQL Server Guy - Instances and Databases ......................... 181 

Default trace - A Beginner's Guide .............................................................. 187 

Streaming Data into SQL Server 2008 from an Application ....................... 194 

SQL Server 2008 and Data Compression .................................................... 201 

The FILESTREAM Data Type in SQL Server 2008 ................................... 205 

Investigating the new Spatial Types in SQL Server 2008 - Part 1............... 212 

SQL Server 2008 SSMS Enhancements - Debugging Support ................... 219 

Deploying Scripts with SQLCMD ............................................................... 228 

Real-Time Tracking of Tempdb Utilization Through Reporting 
Services ........................................................................................................ 234 



The Best of SQLServerCentral.com – Vol.7 

v 
 

Transparent Data Encryption (TDE) SQL Server 2008 ............................... 251 

Introduction to DML Triggers ..................................................................... 261 

Troubleshooting ........................................................................................... 266 

SQL Server 2005 Paging the Holy Grail ..................................................... 271 

Hierarchies in SQL ...................................................................................... 277 

ROW_NUMBER(): An Efficient Alternative to Subqueries ....................... 283 

There Must Be 15 Ways to Lose Your Cursors... part 1, 
Introduction .................................................................................................. 291 

Generating Insert Statements ....................................................................... 298 

Dynamic SQL Merge ................................................................................... 301 

Test-Driven Development of T-SQL Code .................................................. 308 

Automating tests for T-SQL code ................................................................ 316 

Database Server Upgrades the Plan, the Template, and the Task 
List ............................................................................................................... 328 

Split string using XML ................................................................................ 335 

Celko’s Summer SQL Stumpers: Prime Numbers ....................................... 338 

Basically Available, Soft State, Eventually Consistent ............................... 342 

Managing Free Space ................................................................................... 343 



The Best of SQLServerCentral.com – Vol.7 

6 
 

Introduction 
Welcome to The Best of SQLServerCentral.com – Vol. 7 

SQLServerCentral crossed a million members this year and once again we are 
reprinting some of the best articles, the most popular, and the most read in dead 
tree format. We wanted to give our authors a chance to see their names in print 
as well as give you an off-line resource that you can take with you wherever 
you may need it-most likely at your bedside to help you drop off at night :), for 
commutes, holding your coffee cup, whatever. This is our seventh volume and 
it's become an annual tradition. 

We would also like to thank everyone for their support both on the website as 
well as by purchasing this book. Your visits to the site, clicking through to 
advertisers, purchasing products, registering for PASS, all help us continue this 
community and provide you with a valuable resource that hopefully helps you 
learn, perform better at your job, and grow your career. We’d like to encourage 
all of you to submit an article in 2010!  

This is a community that includes all of you and we aren’t looking for only the 
gurus to contribute. We love hearing about the real world you all live in and 
deal with on a daily basis. We try to get at least one article from each author 
and send you a couple copies of the book. That wasn't possible this year with 
the economy down and a record number of authors writing content this year.  
However that should encourage all of you to work a little harder next year and 
write something great. A couple hints: real world situations and basic content 
on one focused area go over the best. 

These are great for your bookshelf and they make a great Mother’s Day 
present. Think about sending something in next year. 

Once again, thanks so much for your support and we look forward to another 
volume next year. 

Steve Jones 

  



The Best of SQLServerCentral.com – Vol.7 

7 
 

SQL Server Preproduction Tasks 
By Ken Simmons 

Introduction 

Okay. You have a new server and a fresh install of SQL Server. What are some 
of the things that you need to do before you sign off and hand it over to 
production? What do you need to do to keep the server running smoothly? Here 
is a list of things I keep in mind before handing a server over to production. 

Preproduction Checklist 

1. Make sure SQL Server has the latest patches. 
This is pretty self explanatory, but before a server gets turned over to 
production make sure it has the latest patches. There is no need in 
causing downtime later because you forgot to patch the box. 

2. Enable full auditing on both Successful and Failed Logins. 
Under the Security Tab in the Server Properties, there is an option to 
audit both failed and successful logins. By default, this is set to failed 
logins only, but I like to be able to correlate events on the server with 
who may have logged in around that time. 

3. Increase SQL Server log history threshold in order to maintain 
logs for a longer amount of time. 
Under the Management folder, right-click on SQL Server Logs and 
select Configure. By default SQL Server will keep 6 error logs before 
they are recycled. I increase this to 99, which is the maximum value.  

4.  Set a default path for data and log files. 
Under the Database Settings Tab in the Server Properties, there is a 
place to set the database default locations. I like to change this in case a 
database gets created without specifying a location, it will not go in the 
install directory. 

5. Set up Database Mail. 
Instead of reinventing the wheel here, I will just point you to a couple 
of articles that I used to setup Database Mail. The following articles are 



The Best of SQLServerCentral.com – Vol.7 

8 
 

script based, so they can be modified and included in your post install 
scripts. 
http://articles.techrepublic.com.com/5100-10878_11-6161839.html 
http://articles.techrepublic.com.com/5100-10878_11-
6164310.html?tag=rbxccnbtr1 

6. Determine Drive Structure and move system databases if necessary. 
Specifically, move the tempdb to its own drive if it is possible. 
The system database that is most likely to cause disk contention and 
grow the largest is the tempdb. I typically try to put the database and 
log file on its own drive. Here is the MSDN link for moving system 
databases. 
http://msdn.microsoft.com/en-us/library/ms345408(SQL.90).aspx 

7. Create a maintenance database. 
A maintenance database is a good place to store objects that are 
required to perform maintenance on the system. This may also be 
where you store things such as the nums or tally 
(http://www.sqlservercentral.com/articles/TSQL/62867/) table that are 
required for certain queries. 

8. Create a job to update statistics. 
I have heard a little on both sides of this. If you are using auto update 
statistics and also have a job to update statistics, you are overworking 
your server. But on the other hand only certain events trigger SQL 
Server to Auto Update. I fall on the side of forcing the update. Here is a 
good script that will force the update for all databases. Keep in mind all 
of these stored procedures unless stated otherwise, I put in the 
maintenance database. 
http://www.sqlservercentral.com/scripts/Maintenance+and+Manageme
nt/31472/ 

9. Create a job to cycle the error log. 
Whenever SQL Server is restarted, it creates a new error log. If the 
server stays up for a while, this can make for a very large error log. I 
create a job that runs on a daily or weekly basis that executes the 
sp_cycle_errorlog stored procedure in the master database. This will 
create a new error log without having to restart SQL Server. 

http://articles.techrepublic.com.com/5100-10878_11-6161839.html�
http://articles.techrepublic.com.com/5100-10878_11-6164310.html?tag=rbxccnbtr1�
http://articles.techrepublic.com.com/5100-10878_11-6164310.html?tag=rbxccnbtr1�
http://msdn.microsoft.com/en-us/library/ms345408(SQL.90).aspx�
http://www.sqlservercentral.com/articles/TSQL/62867/�
http://www.sqlservercentral.com/scripts/Maintenance+and+Management/31472/�
http://www.sqlservercentral.com/scripts/Maintenance+and+Management/31472/�


The Best of SQLServerCentral.com – Vol.7 

9 
 

10. Create a job to cleanup the Backup History from the msdb. 
As backups are performed the information is logged to tables in the 
msdb. Over time this can cause the msdb to become very large. There 
is a stored procedure in the msdb that can be executed to remove this 
history called sp_delete_backuphistory. This accepts a date parameter 
and will remove any history prior to the given date. I create a job that 
runs the following command on a weekly basis. 
 
DECLARE @DeleteBeforeDate DATETIME 
SELECT @DeleteBeforeDate = DATEADD(month,-
1,GETDATE()) 
EXEC msdb..sp_delete_backuphistory @DeleteBeforeDate 

11. Create a job to maintenance indexes. 
I don't like jobs that just go reindex everything in the database. I like to 
selectively reindex; only rebuild the indexes if they are beyond a 
certain fragmentation level. Here is a link to script I am currently using. 
http://blogs.digineer.com/blogs/larar/archive/2007/07/30/smart-index-
defragmentation-for-an-online-world.aspx 

12. Create a job to run a DBCC CHECKDB to run against all 
databases. 
A lot of times this is thrown in with the backup jobs, but I like to create 
a separate job that may be able to run at a different time. 

13. Create a job to check for long running jobs. 
One of the issues I have faced in the past is not being notified that a job 
is having issues because instead of failing it is just hung. I create a job 
that runs once an hour or so to look for jobs that have been running 
over x amount of time. If a job is found, then the long running job fails 
or sends an error notification. The following article can be referenced 
for details. 
http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=
AgentLongRunning&referringTitle=Home 

14. Determine a backup and retention strategy. 
There are several different strategies here. They differ by organization 
and even by server. The main point here is to come up with a solution 
and test it thoroughly. 

http://blogs.digineer.com/blogs/larar/archive/2007/07/30/smart-index-defragmentation-for-an-online-world.aspx�
http://blogs.digineer.com/blogs/larar/archive/2007/07/30/smart-index-defragmentation-for-an-online-world.aspx�
http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=AgentLongRunning&referringTitle=Home�
http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=AgentLongRunning&referringTitle=Home�


The Best of SQLServerCentral.com – Vol.7 

10 
 

15. Make sure each maintenance job has an output file in a standard 
directory. 
In the advanced tab under the job steps create an output file. This will 
allow you to see the full description of the job execution. There is 
nothing more annoying than not being able to see why a job failed. 

16. Determine the optimal memory settings for the server. 
A number of factors affect the way the settings should be configured, 
but here are a couple of articles that may help. 

17. Run the SQL Best Practice Analyzer to determine if there are 
potential issues in the database environment. 

http://msdn.microsoft.com/en-us/library/ms175581(SQL.90).aspx 
http://msdn.microsoft.com/en-us/library/ms190673(SQL.90).aspx 

http://www.microsoft.com/downloads/details.aspx?FamilyId=DA0531
E4-E94C-4991-82FA-F0E3FBD05E63&displaylang=en 

18. You may also be interested in testing your disk drives using 
SQLIOSim. 
http://support.microsoft.com/kb/231619 

Conclusion 

Most of the items above can be scripted and applied to the servers before 
moving to production. Come up with the script that best suits your organization 
and servers and moving a server into production should be a fairly simple 
process.  

Scope: The drastic caveat with Logon 
Triggers  
By Johan Bijnens 

The Story 

Logon triggers were implemented in SQLServer 2005 with SP2. Now we - the 
instance administrators - are able to perform some stuff at the actual logon time 
of a user. This way, we could, for example, restrict users access during a certain 

http://msdn.microsoft.com/en-us/library/ms175581(SQL.90).aspx�
http://msdn.microsoft.com/en-us/library/ms190673(SQL.90).aspx�
http://www.microsoft.com/downloads/details.aspx?FamilyId=DA0531E4-E94C-4991-82FA-F0E3FBD05E63&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyId=DA0531E4-E94C-4991-82FA-F0E3FBD05E63&displaylang=en�
http://support.microsoft.com/kb/231619�


The Best of SQLServerCentral.com – Vol.7 

11 
 

part of the day, only allow connections from certain addresses. To check on my 
licenses, I believed I could use logon triggers to track how many users 
connected from how many client machines. 

I developed a little logon trigger, which executed using the 'sa' context, so I 
didn't have to grant insert to my logging database and table. I didn't mind that I 
would have to use "original_login_name" to get the actual connecting user id. 
This all looked pretty straight forward, not much rocket science at all. 

I first tested it at my dba-dev instance. It worked just fine, not much overhead 
to be noticed…cool. Since the test succeeded, it was time to roll out on the 
developers’ instances (8 instances). 

Once again, everything went just fine. We managed to get a good overview of 
the number of clients hitting our instances and were able to store all connection 
related data. One week after the implementation in DEV, it was rolled out to 
QA. Even there, no problems at all. 

In noticed a number of connections being registrated, so I got at ease and 
planned implementation in our production environments. All needed paperwork 
was done and the "request for change" was submitted and approved. The rollout 
was prepared (including fall back scenarios, mind you) for our 15 instances of 
sql2005 and got launched at the approved time. (Day x at noon). 

The Production Rollout 

Within seconds after the launch, the first production instance dumped and 
crashed! 

However, I didn't notice the instance being failed over to the other node of the 
cluster. But that wasn't the hottest issue at that time. 

Alerts were coming in from our monitoring system and hell opened some 
doors. 

Messages pointed to: 

------ 

Process ID 59 attempted to unlock a resource it does not own: 
DATABASE: 9 Retry the transaction, because this error may be 



The Best of SQLServerCentral.com – Vol.7 

12 
 

caused by a timing condition. If the problem persists, contact 
the database administrator. 

------ 

Process ID 108 attempted to unlock a resource it does not own: 
DATABASE: 9 Retry the transaction, because this error may be 
caused by a timing condition. If the problem persists, contact 
the database administrator. 

------ 

[sqsrvres] ODBC sqldriverconnect failed 

------ 

[sqsrvres] checkODBCConnectError: sqlstate = 08001; native 
error = 102; message = [Microsoft][SQL Native Client]TCP 
Provider: Timeout error [258]. 

------ 

[sqsrvres] checkODBCConnectError: sqlstate = HYT00; native 
error = 0; message = [Microsoft][SQL Native Client]Login 
timeout expired 

------ 

[sqsrvres] checkODBCConnectError: sqlstate = 08001; native 
error = 102; message = [Microsoft][SQL Native Client]Unable to 
complete login process due to delay in login response 

------ 

[sqsrvres] printODBCError: sqlstate = 08S01; native error = 0; 
message = [Microsoft][SQL Native Client]Communication link 
failure 

------ 

Logon failed for login 'thelogin' due to trigger execution. 
[CLIENT:10.16.108.226] 

It was quite obvious: my rollout might trigger this kind of errors. 

The Fallback Scenario 

Time to roll out the fallback scenario for the cumbersome instance. The 
fallback scenario was just a SQLCMD query which would disable the logon 
trigger. This scenario was also tested at Dev and QA, so I was pretty at ease 
with it. 

I ran the SQLCMD and it failed!! 



The Best of SQLServerCentral.com – Vol.7 

13 
 

It failed, because it was exactly the implemented logon trigger that caused the 
issues. It was at that time I really appreciated the Microsoft Dev team's efforts 
to implement the Dedicated Administrator Connection (DAC)! That was the 
way to go to turn off this trigger. 

/*  
if due to a logon trigger you can nolonger connect to a 
sql2005 instance you need the local DAC (dedicated 
administrator connection) using the -A parameter to be 
able to connect to the instance !  
*/ 
/* There can only be ONE active DAC !! */ 
[DOSBOX] 
sqlcmd -A -d master -S TheInstance 
Or start SSMS not connecting to an instance 
  (Object browser not supported with DAC !! )  
then click "New Query" and connect using "admin:TheInstance" 

SQLCMD will give you a commandline like this  
1> 
You will need to enter your statement and the command 
will only be  
executed after you enter 'GO' at the next line. 
1> DISABLE TRIGGER S_tr_DBA_ConnectionTracker ON ALL 
SERVER; 
2> go 
1> exit   

After executing this at the cumbersome instance, things turned back to normal. 
However, because of the dumps sqlserver generated, I asked for an emergency 
intervention to restart the instance so it would no longer suffer any leftovers of 
the dumps. 

It was an instance hosting biztalk databases, so you can imagine the scope of 
the impact. Off course I also immediately disabled all these logon triggers at 
the other production instances that were involved in this rollout operation. 

The Cause 

Now I started digging into the system, trying to figure out what caused all these 
dumps. I started a SQLtrace at the instance that had dumped. At first sight, 
nothing abnormal going on, until I noticed some of the connections were using 
the serializable transaction isolation level. 



The Best of SQLServerCentral.com – Vol.7 

14 
 

I double checked with my biztalk dev team....Isolation level ??? What the 
***... Like many developers, they were unaware of what kind of isolation level 
their applications are using. 

Why didn't this occur in DEV or QA? 

"We weren't using DEV nor QA for the last month or so"... developers on 
vacation, others only used their local virtual pc with their full dev environment. 

No wonder I missed this kind of errors in the whole process of DEV and QA. 

Back to the drawing board for the logon tracker, because its scope was 
actually not restricted to the little registration at the beginning of a connection, 
as I supposed it would be. 

The Solution 

Would it be worth the effort of converting it to a service broker application, by 
just forwarding the connection info into a service broker (SSB) queue, and 
processing that asynchronously? 

As a matter of fact, that concept already exists in SQLServer 2005. It's called 
"Event Notifications". In this case using the login events. Asynchrone by 
design and the upmost valid alternative for my quest. 

Why didn't I think of that in an earlier stage? 

It provided me about all the data I had available with the logon trigger, except 
for the ip address of the connecting device. 

I started off reading this nice article and elaborated on it: 

- SQL Server 2005 Logon Triggers by Frederik Vandeputte as SSC 
(http://www.sqlservercentral.com/articles/SQLServerCentral/sqlserver2005logo
ntriggers/2366/). 
- Logon triggers by Cristian Lefter as Simple-talk (http://www.simple-
talk.com/sql/t-sql-programming/logon-triggers/

My solution is very similar to the solution Frederik Vandeputte posted as SSC. 
So, in my stored procedure that handles the queue, I just added an extra join to 
see if that user was still connected via that SPID and pull out the ip address. 

) 



The Best of SQLServerCentral.com – Vol.7 

15 
 

I didn't want to get caught twice by the same pitfall, so I made sure my biztalk 
devs tested their stuff whilst the new implementation was active. 

Lessons learned 

Never assume a server has a typical usage. Double check with all dev teams to 
test. 

Always prepare fallback scenarios and make sure you know about the 
Dedicated Administrator Connection (DAC). 

Just like with any trigger, be sure its scope is very small. 

And last but not least: First consider if things actually need to be performed in 
realtime mode. 

P.S. Notice to myself: Check all servers for the isolation levels that are being 
used. 

The Date Dimension in Analysis Services 
By Vincent Rainardi 

In data warehousing, date dimension is the most frequently used dimension. 
Consequently, when building a cube for a data warehouse in Analysis Services, 
we almost always have to create a date dimension. In this article I'd like to 
discuss things that we are likely to come across when creating a date dimension 
in Analysis Services, such as having several date dimensions and handling 
unknown rows. I'm going to refer to Analysis Services as SSAS, which stands 
for SQL Server Analysis Services. In this article I'm referring to SSAS 2005 
and SSAS 2008, not SSAS 2000. 

Role Play Dimension 

In SSAS, we can have the same dimension added into the cube several times as 
different names. This is known as a 'role play' dimension. A dimension that has 
been attached to a cube is called a 'cube dimension'. 



The Best of SQLServerCentral.com – Vol.7 

16 
 

The purpose of having a role play dimension is to have identical dimensions in 
the cube. These cube dimensions have the same attributes, the same members, 
the same hierarchies, the same sorting order, the same properties, the same 
default member, and the same display folders. Everything is the same, except 
the name and the relationship to the measure groups in the cube, i.e. referenced 
or direct, materialized or not. 

For example, in retail banking, for checking account cube we could have 
transaction date dimension and effective date dimension. Both dimensions have 
date, month, quarter and year attributes. The formats of attributes are the same 
on both dimensions, for example the date attribute is in 'dd-mm-yyyy' format. 
Both dimensions have members from 1993 to 2010. Both dimensions have 
Year-Month-Date hierarchy. 

When we change something, for example adding 2011 dates, both transaction 
date dimension and effective date dimension will be affected. This way we can 
be sure that they will always be identical. On the other hand, if we create the 
transaction date dimension and effective date dimension from 2 separate date 
dimensions (say transaction date is from date1 and effective date is from date2) 
then when we change the date1 dimension (say adding a new level), only 
transaction date will be affected. 

Multiple Named Queries 

Data Source View (DSV) is a layer on an Analysis Services project where we 
can specify the tables and views that we use to build a cube, and the 
relationship between the tables/views. Instead of specifying a table or a view, 
we can also specify a SQL select statement that queries a table or a view, or 
several tables/views. This select statement is called a Named Query. 

On the DSV, we can create several named queries from the same date 
dimension table on the relational database. The reason for doing this is to 
enable us select a different range of data, i.e. different sets of rows. For 
example, in a credit card cube, for the start date dimension we may want to 
select different date range compared to the expiry date dimension. Perhaps the 
start date starts from 1996 but the end date starts from 1998. For insurance 
industry, for each policy or risk we have written date, accounted date, inception 
date, effective date and expiry date. These dates may have different ranges. 

The second reason for having separate named queries on the DSV for date 
dimensions is to enable us to have different sets of columns. For example, for 



The Best of SQLServerCentral.com – Vol.7 

17 
 

written date, transaction date and effective date the business may need year, 
quarter, month and date attributes. Whereas for snapshot month, they only need 
month and year. 

The third reason for having separate named queries in the DSV for date 
dimensions is to enable us to set different formats for each attribute, as well as 
different hierarchy structures. Some date dimension may require '2008 July' and 
'2008-Q1' without any hierarchy but another date dimension may require just 
the month name and quarter name (e.g. 'July' and 'Q1') and a hierarchy to 
connect the two. 

Normally for each named query on the DSV we create one dimension. But in 
some cases we may need to create 2 or more date dimensions from a single 
named query on the DSV. The reason for this is to enable us to configure the 
dimension properties differently, such as unknown member, default member, 
error configuration and display folder. And also, we can specify dimensional 
security differently. 

Before we continue, let's recap: 

From one date dimension table we can create several named queries.  

From one named query we can create several dimensions.  

From one dimension we can create several cube dimensions.  

Unknown member 

An 'unknown row' is a row on the dimension table to which the orphaned fact 
rows are assigned. The unknown row usually has a surrogate key value of 0 or -
1. For example, the date dimension table contains dates from 1/1/1980 to 
12/31/2020. If on the source of the fact table we have a date of 1/1/1970, which 
is not on the dimension table, the date surrogate key on the fact table is set to 0 
(or -1). This way that fact table row is assigned to the unknown row. 

In some data warehouses, the unknown row for the date dimension is 1/1/1900. 
Consequently, the year column of this unknown row is set to '1900'. Some users 
don't like to see '1900' when browsing the cube. They prefer to see 'unknown' 
instead of '1900'. But year is a numeric column and we can't store the word 
'unknown' in the year column. In this case we may choose not to use the 
unknown row but to map it to the dimension unknown member. To do this, we 



The Best of SQLServerCentral.com – Vol.7 

18 
 

make the unknown member of the date dimension 'visible'. On the DSV, we 
explicitly exclude the unknown row like this: select & from dim_date where 
date_key <> 0 . On the error configuration of the cube, we set the 
KeyErrorAction to 'ConvertToUnknown', the KeyErrorLimitAction to 
StopLogging and the KeyNotFound to IgnoreError. This way, when SSAS 
processes the cube and found a date on the fact table that does not exist in the 
date dimension table, that fact row will be assigned to the unknown member 
and SSAS will continue processing the cube. We need to be careful when doing 
this because it will affect all other dimensions, not just the date dimension. 

There are 3 places where error configuration for the orphaned fact row can be 
set: cube, measure group and partition. The error configuration on the 
dimension itself doesn't affect the orphaned fact row; it is for orphaned 
dimension rows in a snow flake schema situation. 

Another benefit of using the unknown member rather than the unknown row is 
to capture 'orphaned rows'. An orphaned row is a row on the fact table with a 
dimension key that does not exist on the dimension table. In best practice this 
should not happen. The ETL is supposed to prevent this situation. The ETL 
should allocate key 0 (or whatever the surrogate key of the unknown row is) to 
those fact table rows, so that they are mapped to the dimension unknown row. 
But in reality this does happen in practice. Not intentionally of course but it 
does happen. A typical situation is where the dimensional key column on the 
fact table contains NULL rather than 0 because that key column is not 
applicable for that fact row. 

We suppose to have a foreign key on the fact table to prevent orphaned rows, 
but in many data warehouse implementation I found that this is not the case. 
Some people argued that it is not possible to have orphaned rows on the fact 
tables, because all data flowing into the warehouse is controlled by the ETL 
and the ETL always mapped unknown fact rows to the unknown row in the 
dimensions so we don't need to put foreign keys. But I found in a few occasions 
that data warehouses without foreign keys on the fact tables do have orphaned 
fact rows. In chapter 6 of my book ‘Building a Data Warehouse with Examples 
on SQL Server’ (http://www.amazon.com/dp/1590599314

In data warehousing and business intelligence, mapping orphaned fact rows to 
the unknown member is important because if not we will miss those fact rows, 
causing the total of measures to be incorrect. In SSAS, if we don't change the 
UnknownMember and ErrorConfiguration properties, by default orphaned rows 

), I explained the 
benefits of putting foreign keys on the fact tables and how to deal with the 
assumed disadvantages (such as slowing ETL load process). 



The Best of SQLServerCentral.com – Vol.7 

19 
 

on the fact table will be mapped to the dimension unknown member. This way 
we will always get the correct totals of the measures. Some people set the 
UnknownMember property of the dimension to 'Hidden', relying completely to 
the ETL to guarantee that there are no orphaned rows in the fact table. If you 
decide to do this, it is wise to put foreign keys on the fact tables to guarantee 
referential integrity. 

Another benefit of using unknown member rather than unknown row is that we 
can specify the name of the unknown member. It doesn't have to be 'Unknown'. 
We can set it to 'Not Applicable', for example, to suit the users' needs. 

Despite all the advantages I mentioned above, personally I would prefer not to 
fiddle around with the unknown member in SSAS. Rather, I prefer to set the 
data in the fact and dimension tables correctly and leave the SSAS 
UnknownMember as per their defaults. For example, I've come across a 
situation where the value of an attribute on the unknown row is = 'unk'. But 
there is another row in the dimension table with the attribute value = 'unknown'. 
When browsing the cube the users will find that the attribute has both 'unk' and 
'unknown' members. We could tackle this on the DSV by adding a 'CASE 
WHEN' clause on the named query SQL, or we could exclude the unknown 
row and use the unknown member instead. But I prefer to fix the data, setting 
the physical values of that attribute correctly in the dimension table. The 
physical dimension table may not only be used by SSAS; it may also be used 
for reporting by SSRS or other reporting/BI tools such as Business Objects or 
Cognos. 

Another disadvantage of using unknown member rather than unknown row is 
that when we make the unknown member visible, when there is no unmatched 
record, we will still see that member (unless we suppress it on the OLAP 
client). 

Date Hierarchies 

It is a best practice to build a hierarchy and hide the composing attributes. This 
is more so in 2008 where AS checks if we have hidden the members used in the 
hierarchy and give us a warning if we haven't done so, e.g. Avoid visible 
attribute hierarchies for attributes used as levels in user-defined hierarchies. 

For example, say we have these attributes: date, quarter, month and year. 

1. Year: yyyy, e.g. 2008  



The Best of SQLServerCentral.com – Vol.7 

20 
 

2. Quarter: yyyy Qn, e.g. 2008 Q4  

3. Month: yyyy-mm, e.g. 2008-10  

4. Date: yyyy-mm-dd, e.g. 2008-11-15  

We then create a Year-Quarter-Month-Date hierarchy and we hide the Date, 
Month and Year attributes. When we browse the hierarchy using ProClarity it 
looks like this: 

 

Figure 1. Browsing a date hierarchy in ProClarity 

And in Excel 2007 it looks like this: 

 

Figure 2. Browsing a date hierarchy using Excel 2007 



The Best of SQLServerCentral.com – Vol.7 

21 
 

My colleague John Tunnicliffe (http://sqlblogcasts.com/blogs/drjohn/) advised 
me about ISO 8601 date format (yyyy-mm-dd), which I think is a good idea 
because of its clarity. It takes away the confusion caused by country-by-country 
custom such as dd/mm or mm/dd. He also mentioned about dd-mmm-yyyy 
format, e.g. 06 May 2008, which is useful to remove the confusion about 
month, such as 05/06/08: is it 5th June or 6th May? One caution about using 
mmm (short form of month) is the language, i.e. is it Mei, Mai or Mayo? 

On the OLAP client, users can select members from different levels. And those 
members are not necessarily ascendant to each other. For example, users can 
still select non-ascendant months together, user can still choose 'all dates in 
July 2008'. This depends on the OLAP client, i.e. some OLAP clients provide 
facility to select all descendants of a member, but some with OLAP clients we 
have to select the descendants manually. 

Although BIDS 2008 advised to hide the attributes used in the hierarchy, in my 
experience some users would still prefer to see those attributes. This enables 
them to use (for example) the month attribute directly either as a slicer or filter, 
without navigating through the Year-Month-Date hierarchy. 

We should name our hierarchies properly. The name needs to reflect the levels, 
i.e. 'Year-Month-Date', not just 'Date Hierarchy'. Also it is better to avoid 
abbreviation. Calling it YMD might cause confusion among some users, 
wondering what YMD stands for. 

It must have been quite a long read so far, so I'll end it here. In part two, 
available on SQLServerCentral.com, I will discuss:  

1. Date dimension that is used as a referenced dimension  

2. Date dimension that is generated and stored on the SSAS server (no 
physical table)  

3. Advantages and disadvantages of using smart date key e.g. 
YYYYMMDD with int data type  

4. Enabling users to select a date (or month) to be used in calculated 
measure using 'from date' and 'to date'  

5. and other things  

http://sqlblogcasts.com/blogs/drjohn/�
http://www.amazon.com/gp/product/1590599314?ie=UTF8&tag=dkranchnet&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599314�


The Best of SQLServerCentral.com – Vol.7 

22 
 

Vincent Rainardi 
Author of: Building a Data Warehouse with Examples on SQL Server. 
November 2008 

SCOME - Centralize Monitoring with 
ASP.NET - Part 1 
By Drew Salem 

What to do when your hands are tied? 

When they discovered VMware, my employers became overly excited. For 
every new application, they created a new Windows Server environment with 
(despite my recommendations) it's own SQL Server. And so SQL Servers were 
popping up like wild mushrooms in a field of cows with the runs (cows have 4 
stomachs). Every couple of weeks, another 2 or 3 SQL 
Servers would appear in the network list, and I would 
have no idea where they came from. Additionally, SQL 
Servers are a free for all where I currently work, with 
network administrators and 2nd line support going on 
and fiddling with the Servers as and when they please. 
There is no change control. Passwords can change 
without me knowing, Servers are shut down at times during the night, out of 
hours, without a thought as to what it might affect. SQL Servers are installed by 
non-DBAs and no consideration is taken towards parameters outside the 
wizards default setup.  

This is not a made up scenario, this is where I work. Now, I ask you from DBA 
to DBA, how do you manage 47 business critical servers in an environment like 
this? Forty seven SQL logs are 37 too many to check on a daily basis. As well 
as 47 x ? jobs (439 currently). Not only do failed jobs need to be checked, but 
their run times too. If a network fairy shut down a server during the night, SQL 
Server will not flag the job up as having failed. And then how do you manage 
disk space for this many servers when space is added and removed without any 
notice (due to another new toy, the SAN). And there are your test restores and 
log space and index rebuilds.... It's a lot to do in an uncontrolled environment 
for this many critical servers for one DBA. I can honestly say that during my 
first few months, I was losing sleep. I don't mean to go on about my own work 
experiences, but I'm going somewhere with this.  

http://www.amazon.com/dp/1590599314?tag=intemarkworl-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=1590599314&adid=0QVVK6KHKWKYFFGVDX56&�


The Best of SQLServerCentral.com – Vol.7 

23 
 

Despite the severity of the situation and even though little has changed, things 
are now very different, as through centralizing, I am one step ahead of 
everyone else in the department. With these scripts I am on top of every aspect 
of monitoring and regularly find myself informing colleagues in the department 
of errors and warnings in their areas well before they are even aware of them.  

What are these articles about? 

These articles are about centralizing the monitoring of all your SQL Servers 
(and Oracle ones too, if you have them) and packaging the results in an 
ASP.Net web application. I had read many good articles on the topic of 
centralizing and used some of the methods, but the majority of these returned 
results in the query window or used SQL Mail to deliver the results to your 
inbox. With a heap of different areas to check daily, this felt a little fiddley and 
messy. I wanted a cleaner way of monitoring all the servers. I wanted reports. 
Daily reports in a slick page, accessible from anywhere. And so I fired up 
Visual Studio, and over many months developed a suite of web applications 
that gave me a bird’s eye view of all the SQL Servers in the organization.  

Through a series of articles, I'll demonstrate how I did this and will cover 
everything from the SQL Server side to the writing of the web application itself 
in ASP.Net/VB.Net. You don't need to know anything about .Net, as the format 
provided will be a step-by-step guide describing how to setup the Visual Studio 
environment, how to write the server side .Net code to display the results and to 
how to deliver the web pages across the network so that they are accessible 
from anywhere. To make this suitable for as many people as possible, I will 
assume you know nothing, so forgive me if I iterate over something that may 
seem obvious or something you already know. As there is so much to cover, I'll 
actually do very little explaining on how some things are the way they are in 
.Net, or the technology behind them, but feel free to Google these as, needless 
to say, there are very good web sites that do this. The aim here however is to 
get you up and running, so that you can systematically build your own .Net 
solutions in your own time, that will in-turn aid your day to day DBA duties. 
Whilst there are various ways of actually extracting data from databases in 
.Net, we will mostly use T-SQL to do this, purely so that you can combine your 
existing DBA SQL skills with web design abd development. If there is an 
ounce of creativity in you, you’ll find yourself reveling in doing so. It's great 
when it finally all comes together.  

So enough faffing (http://www.wordwebonline.com/en/FAFF). 



The Best of SQLServerCentral.com – Vol.7 

24 
 

How does it work? 

Here’s a run down on how the system works (I'll provide scripts and step-by-
step instructions in articles to come). Let's say that we want to monitor for 
failed jobs on two SQL Servers called Payroll_Server and CRM_Server.  

1. First thing's first, you ask the boss for your own SQL Server 
"SQL_Admin" to run all your monitoring and auditing scripts from. 
You want your own server because later you'll be performing test 
restores on to it. 

2. You chase the request for your server. 

3. Six months later you've got your server. You now create your own 
database "DBA_Admin" that will hold all tables that will store the data 
regarding the SQL Servers that are being monitored. 

4. You create two linked server connections from SQL_Admin to 
Payroll_Server and CRM_Server. 

5. You create a table in DBA_Admin called "Linked_Server_Details" that 
holds details about all servers to be monitored (i.e. all linked servers), 
in this instance Payroll_Server and CRM_Server. 

6. You create a table in DBA_Admin called "Failed_Job". This table will 
hold data regarding all failed jobs on all linked servers being 
monitored. 

7. Now we setup the mechanism that will collect the data from all the 
linked servers. It's what I call the SCOME technique (Servers Coming 
Outa My Ears). We create a stored procedure called usp_GetFailedJob. 
This stored procedure accepts an input parameter; the name of any 
linked server i.e. usp_GetFailedJob 'Payroll_Server'. The stored 
procedure then fetches data from Payroll_Server's Dynamic 
Management Views and/or system tables and puts it into the 
Failed_Job. 

8. But we want SQL_Admin to run this procedure on all our linked 
servers so that the table Failed_Job holds data about failed jobs on all 
servers being monitored. We have data about Payroll_Server's failed 
jobs but not CRM_Server's failed jobs. So we create another stored 



The Best of SQLServerCentral.com – Vol.7 

25 
 

procedure call usp_iterate_thru_servers. This proc goes through all 
servers in the Linked_Server_Details table one row at a time, collects 
the name of the server being monitored and sticks it in front of 
usp_GetFailedJob. Usp_GetFailedJob then does it's bit. We end up 
with a table of data of all failed jobs for all linked servers. 

9. We create a job on SQL_Admin called Failed_Jobs and schedule this 
to run however often we want it to. We give this job a new category 
called "Monitoring_Jobs" (this is because we'll later write a web report 
that will tell us if any of our monitoring jobs themselves have failed!). 

10. Now the fun part, we fire up Visual Studio and create a colorful web 
application that collects data from the table and displays it for us. 
Additionally, from this one page we can provide links to other pages 
that display the errors logs to see why it failed (saves us firing up 
SSMS), have a graphical representation of the number of failed jobs in 
the last month, the date the data was last collected etc. 

11. We setup Internet Information Services to display the application as a 
web site so that we can access it from anywhere and then we publish 
the site. 

12. We can now check anytime during the day if any of the hundreds of 
jobs across all our servers have failed. 

That's it. The job is not resource heavy and completes within seconds. Now the 
beauty of the SCOME technique, is that this system can be applied to any type 
of DBA monitoring i.e. Disk Space, Unrun backups, Log size etc. Just replace 
the job's specific DMVs with those that hold data on backups or disk space or 
Log space. And replace the Failed_Job table with a table such as Disk_Space. 
You can have a whole suite of reports. In fact, if you can think of any that 
could be added to the suite, please share your idea with us in the article forum. I 
am genuinely open to suggestions on this and will be happy to write new 
articles based on these suggestions (as well as use them at work!). 

Here's a figure representing the SCOME technique. 



The Best of SQLServerCentral.com – Vol.7 

26 
 

 

We use ASP.Net to read the results from the table and display them in a web 
page... 

 



The Best of SQLServerCentral.com – Vol.7 

27 
 

Now substitute the failed jobs system tables and dynamic management views 
for any other, and you can collect info about anything SQL Server, on all your 
linked servers.  

In the next article we'll setup the SQL Server side of things; the tables, linked 
servers, security settings and any necessary MSDTC settings that need 
changing. 

Monitoring Changes in Your Database 
Using DDL Triggers 
By David Dye 

Introduction  

Additions, deletions, or changes to objects in a database can cause a great deal 
of hardship and require a dba or developer to rewrite existing code that may 
reference affected entities. To make matters worse tracking down the 
problematic alteration(s) may be synonymous to locating the needle in the 
haystack. Utilizing a DDL trigger in conjunction with a single user created 
table, used to document such changes, can considerably minimize the 
headaches involved in tracking and locating schema changes. 

Creating the Table and DDL TRIGGER 

The first step in implementing such a tracking strategy is to create a table that 
will be used to record all DDL actions fired from within a database. The below 
code creates a table in the AdventureWorks sample database that will be used 
to hold all such DDL actions: 

USE AdventureWorks   
GO   
CREATE TABLE AuditLog 
(  ID         INT PRIMARY KEY IDENTITY(1,1),   
  Command    NVARCHAR(1000),   
  PostTime   NVARCHAR(24),   
  HostName   NVARCHAR(100),   
  LoginName  NVARCHAR(100)  )   
GO   



The Best of SQLServerCentral.com – Vol.7 

28 
 

After creating the table to hold our DDL events it is now time to create a DDL 
trigger that will be specific to the AdventureWorks database and will fire on all 
DDL_DATABASE_LEVEL_EVENTS: 

CREATE TRIGGER Audit ON DATABASE   
FOR DDL_DATABASE_LEVEL_EVENTS   
AS   
DECLARE @data XML   
DECLARE @cmd NVARCHAR(1000)   
DECLARE @posttime NVARCHAR(24)   
DECLARE @spid NVARCHAR(6)   
DECLARE @loginname NVARCHAR(100)   
DECLARE @hostname NVARCHAR(100)   
SET @data = EVENTDATA()   
SET @cmd = 
@data.value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', 
'NVARCHAR(1000)')   
SET @cmd = LTRIM(RTRIM(REPLACE(@cmd,'','')))   
SET @posttime = @data.value('(/EVENT_INSTANCE/PostTime)[1]', 
'NVARCHAR(24)')   
SET @spid = @data.value('(/EVENT_INSTANCE/SPID)[1]', 
'nvarchar(6)')   
SET @loginname = @data.value('(/EVENT_INSTANCE/LoginName)[1]', 
      'NVARCHAR(100)')   
SET @hostname = HOST_NAME()   
INSERT INTO dbo.AuditLog(Command, PostTime,HostName,LoginName) 
   VALUES(@cmd, @posttime, @hostname, @loginname)   
GO   

The purpose of the trigger is to capture the EVENTDATA() that is created once 
the trigger fires and parse the data from the xml variable inserting it into the 
appropriate columns of our AuditLog table. The parsing of the EVENTDATA() 
is rather straight forward, except for when extracting the command text. The 
parsing of the command text includes the following code: 

  SET@cmd = LTRIM(RTRIM(REPLACE(@cmd,'','')))   

The need for the LTRIM and RTRIM is to strip all leading and trailing white 
space while the REPLACE is used to remove the carriage return that is added 
when if using the scripting wizard from SSMS. This will provide the future 
ability to use SSRS string functions to further parse the command text to offer 
greater detail. 

Once the table and trigger have been created you can test to assure that it is 
working properly: 



The Best of SQLServerCentral.com – Vol.7 

29 
 

UPDATE STATISTICS Production.Product   
GO   
CREATE TABLE dbo.Test(col INT)   
GO   
DROP TABLE dbo.Test   
GO 
-- View log table   
SELECT * 
FROM dbo.AuditLog 
GO 

The results of the above query should are shown below: 

 

Conclusions 

By creating a table to hold all DDL actions and a database level DDL trigger 
we can successfully capture all DDL level changes to our database and provide 
greater ability to track and monitor any such change.  

As performance of any such action(s) is most often the deciding factor as to 
whether implement such change control, I have limited excessive parsing or 
formatting in the above trigger. Consider this the first step, documenting. Later 
I will post how to utilize reporting services to provide reports showing: 

1. DDL action, CREATE, ALTER, DELETE, etc 

2. The schema and object affected 



The Best of SQLServerCentral.com – Vol.7 

30 
 

3. Workstation executing DDL statements 

4. Drill down report to show object dependencies 

That will use the documenting objects created above to provide greater insight 
and detail external of your production environment. 

Imaginative Auditing with Rollback 
(Undo) and RollForward (Redo) Part I 
By David McKinney 

Imagine an audit table that allows you to rollback the changes you just made to 
the data. Or imagine that you ve had to restore a database from last nights 
backup, and you want to roll forward this morning s transactions for all tables 
except one. Imagine an audit table that will give you the sql insert script for the 
file you ve just loaded using SSIS. Imagine all this without using a 3rd party 
tool, and without going near the transaction log. 

The code in this article is going to give you all of this, and more sort of. 

Enough imagining - now for the reality. The basic idea is an audit trigger that, 
instead of just recording old and new values, will actually generate the sql for 
you to enable you to reproduce the exact same insert, update or delete. In 
addition, it will also generate the sql to rollback the statement. 

Note: The code below was written for SQL 2005. 

Auditing the Items table 

ItemId ItemName Price 
1 Chocolate bar 1.15 
2 Soda 1.00 
3 Chocolate milkshake 2.00 
4 Mineral Water 1.30 

Let’s say we want to double the price of items containing chocolate. You might 
use an update statement like the following 



The Best of SQLServerCentral.com – Vol.7 

31 
 

  UPDATE tblItems 
    SET Price=Price*2 
    WHERE lower(Item) like '%chocolate%'   

The audit table should record the following 

RollforwardSQL RollbackSQL 
UPDATE tblItem SET Price=3.30 WHERE 
ItemId=1 

UPDATE tblItem SET Price=1.15 WHERE 
ItemId=1 

UPDATE tblItem SET Price=4.00 WHERE 
ItemId=3 

UPDATE tblItem SET Price=2.00 WHERE 
ItemId=3 

An INSERT or a DELETE works in a similar way. 

DELETE FROM tblItems WHERE ItemName= Soda  

Should give the following in the audit table: 

RollforwardSQL RollbackSQL 
DELETE FROM tblItems WHERE ItemId=2 INSERT INTO tblItems (ItemId, Item, Price) 

VALUES (2, Soda , 1.00) 

(Also if ItemId is an identity column, the INSERT statement must be 
surrounded by SET IDENTITY_INSERT ON / OFF.) 

Creating the Audit database 

I’m creating a specific database to store the audit table. (There is only one audit 
table.) If you d rather not create a new database, then you can create the audit 
table in an existing database but you ll have to make a couple of simple 
modifications to the code. 

Note: This code is at www.sqlservercentral.com 

Creating the Items Table 

For the purposes of this example, let s create the items table in the Audit 
database (something that wouldn t normally happen and it ll work fine if you 
create it somewhere else.) The script below will create the table and populate it 
with 4 rows as above. 



The Best of SQLServerCentral.com – Vol.7 

32 
 

Note: This code is at www.sqlservercentral.com 

Creating the Audit Trigger 

Auditing is done by a regular trigger, which first examines the inserted and 
deleted tables to establish whether we re dealing with an insert, delete or 
update. In then tackles each case differently constructing the sql by selecting 
from the inserted and deleted tables. 

The script below will create the trigger on the Items table. Once this is created, 
you can start playing about, by inserting updating and deleting rows from the 
Items table. The changes and the sql to undo the changes will be scripted for 
you in the table BigAudit. 

Note: This code is at www.sqlservercentral.com 

Now try executing the update and delete statements we saw earlier against the 
item table. Then take a look at the BigAudit table in the fields RollBackSQL 
and RollForwardSQL. 

Try with your own SQL statements - an insert for example. If you want to 
rollback the changes just select the script from the BigAudit table 

SELECT RollBackSQL FROM dbo.BigAudit ORDER BY Autonumber DESC   

Copy the results into a query window and execute to rollback the changes. (By 
the way, this will also get recorded to the audit table.) Note the descending sort 
so that the changes get undone in the right order. This means, for example, that 
you won't get problems with foreign key constraints. 

At this stage you may well be thinking, well that s quite cool, but I ve got lots 
of tables, with lots of fields, and it s going to take me forever to write such 
triggers for them. The good news is that you don t have to. 

In Part II, I ll be showing you how you can generate these triggers for all tables 
in your database, in a matter of minutes. 

There are a couple of conditions it won t generate triggers for tables that don t 
have primary keys, and it won t correctly audit changes when changes are made 
to primary key fields. Hopefully, this won t be an issue for most of us. I m a 
firm believer that every table without exception should have a primary key, and 



The Best of SQLServerCentral.com – Vol.7 

33 
 

it s generally considered bad practice to change the value of a primary key 
field. 

A little clue about how it's done - XML is heavily involved! 

9 Things to Do When You Inherit a 
Database  
By Sylvia Moestl Vasilik 

So ... Bob's left the company to move back east, and you're the new lead 
database developer on the database. Or, the third-party company to which the 
maintenance has been outsourced is no longer working on it, so it's yours now. 
One way or another, you need to take over a database system that you had no 
part in developing. It's not in good shape, and there's not many resources for 
you to tap.  

What do you do?  

I've been faced with this situation a few times now, and have developed a list of 
some of the things that have helped me the most, both in getting productive, 
and in bringing the database system up to par. 

Backups 
Make sure that backups are happening. I'm assuming here that you're the 
database developer, and not the database administrator. However, just as 
minimum check, make sure that backups are occurring regularly. Ideally you 
should successfully restore the backup somewhere else. 

Research 
Look at the database. Go through and get an idea of the table structure, what 
the largest tables are by size, what the most commonly used stored procedures 
are, if there are jobs, and what documentation there is. Read through some the 
stored procedures. You may find it useful to create a quick and dirty database 
diagram if there isn't one, using the built in diagramming tool in SQL Server. 
This can also be a good visual aid when you talk to other people. 

Talk to the former developers 
This may not be an option, but try hard to have a least a few friendly interviews 



The Best of SQLServerCentral.com – Vol.7 

34 
 

with the former developers. This is not the time to make comments like, "I can't 
believe you guys did [insert bad development practice here]". You don't know 
the history- maybe it was that way when they got the system. You'll want to get 
as much information as they can give you on current issues, items on this list, 
etc. Keep things friendly - and maybe try to get their cell number in case of 
questions. A good relationship with former developers can go a long way. 

A bug database 
Is there a bug database - somewhere that bugs (and sometimes enhancement 
ideas) are tracked for this system? This is certainly one of the things that you 
want to set up, if it's not there currently. I've always been lucky enough to work 
at companies where bug tracking was taken seriously, and there were systems 
already in place that I could just plug into. If there's no bug database, time to do 
some research. I wouldn't suggest reinventing the wheel here, since there's a lot 
of good systems out there -- just use what's available. 

Source code control 
Is the code in some kind of source code control system, such as VSS or 
Perforce? If it is -- is everything up to date? I'm going to hazard a guess that it's 
either not in source code control, or it hasn't been kept up to date. That's been a 
big task for me when starting work on inherited systems. There's a number of 
tools with which to tackle this. In the past I've used a custom written Perl tool 
that used SQL DMO, but I won't go into detail -- that's the topic of another 
article. If nothing else, you could use the built in tools that SQL Server 
provides to script out your database objects, and check them in. Once you have 
everything checked in, try running a database build from the checked in code, 
and compare it to production. Also -- make sure you have a good system to 
keep all the code updated! 

Talk to the users and/or business owners 
Sit down and have some conversations with the users. This is a good 
opportunity to get to know their problems and concerns, the improvements they 
would most like to see, and where things are heading in the future. You want to 
make sure that this database is sticking around, that it's not going to be replaced 
with a third party product or anything like that. If you're going to put a lot of 
work into improving the system, you need to know that your efforts are going 
to pay off for the business. Also-you'll probably be spending lots of time on 
issues that are important to a well-run database system (a bug database, source 
code control, etc), but that won't give them any new features. Make sure they 
understand this.  



The Best of SQLServerCentral.com – Vol.7 

35 
 

Establish credibility with the users by fixing a few things or making some 
enhancements 
Even though you'll probably be needing to spend a lot of time on tasks like 
setting up source code control, bug tracking, etc, you don't want to do this 
exclusively. From talks with users, hopefully you've identified enhancements or 
bug fixes that you could get out quickly. Do what you can here. This is a great 
way to establish credibility with them. Let them know, too, that once you have 
the systems in place, bug fixes and enhancements will be much easier to roll 
out. 

Create a development environment 
If you don't have a development environment, but code still needs to be written, 
where are the developers going to write and test their code? I hate to tell you, 
but if they have access, they'll write and test in the production environment. So 
you may have stored procedures called CampaignEmailExport_TEST hanging 
around (and never getting deleted). Or -- oops -- you may accidentally 
overwrite the production version with your new version, and then it runs and 
causes hundreds of thousands of emails to be sent where they weren't supposed 
to. Not that I've ever heard of this happening. This kind of problem can go a 
long way towards convincing users that time and money needs to be spent on 
working on setting up a good foundation. 
For the development environment-you may be able to just get a backup from 
production, and set it up on another server. If it's too large, you might need to 
be creative. Whatever you do, don't develop or test in the production 
environment. 

Drop obsolete objects 
In a system that hasn't been maintained very well, it's likely that there are a lot 
of database objects out there that aren't being used. They may have suffixes like 
'temp' or 'bak' on them. It can be hard to identify all of these, and you may be 
tempted to just leave them. However, they can cause a number of problems: 

• They make it difficult to figure out what the actual working code base 
is. If you have a lot of duplicate, backup, "working" or "temp" objects, 
you don't know what your code base is like, and how complex it is.  

• Supposed you'd like to drop a tables because it's huge, and looks like it 
hasn't been updated in a long time, but it turns out that they're being 
used by stored procedure X. If it turns out that stored procedure X is 
never used, but you're keeping it around in the database anyway, then 
you've just lost this opportunity to enhance your code because of an 
obsolete stored procedure. This kind of issue, multiplied by all the 



The Best of SQLServerCentral.com – Vol.7 

36 
 

obsolete objects that are in the database, can cause development to be 
very slow, or even grind to a halt.  

Finally... 
There's potentially months and months of work if you start from scratch on all 
of the above. It'll require good judgment on what to prioritize, where to start, 
and how much time to spend on all the tasks that need doing. And perhaps 
you're not in a position to set all the priorities. But it can be worthwhile and fun 
to streamline and tune-up a database that just needs a little work to become a 
well-oiled machine, requiring much less development time.  

Thanks for reading!  

Cursors for T-SQL Beginners 
By Wagner Crivelini 

For those who are familiar with other RDBMS's, it may sound weird to hear 
from T-SQL developers that cursors should be avoided. Other languages even 
encourage their use.  

Cursors treat data in a one-record-at-a-time fashion. Data will be kept in 
memory, so if you are careful enough when defining the cursor, data retrieval 
could be faster. But in case you are not, it might be disastrous to your server. 

Personally I see cursors as a useful resource, but we do need to watch them 
closely. Let's take a look into two situations where cursors are used. And let's 
discuss if they could be replaced using other T-SQL features. 

CASE 1 - When concatenating a string 

It may sound funny, but I bump into this kind of request (concatenating a 
string) over and over again. Consider when your application needs to show a 
person's phone numbers in one single field, as home phone number, business, 
mobile, fax, etc. To illustrate, let's consider the following table "dbo.tblPhone" 

CREATE TABLE dbo.tblPhone ( 
 codUser INT, 
 codPhoneType TINYINT, 
 PhoneNumber VARCHAR(20), 



The Best of SQLServerCentral.com – Vol.7 

37 
 

 ListThisNumber TINYINT , 
PRIMARY KEY (codUser, codPhoneType) 
) 
GO  INSERT INTO dbo.tblPhone VALUES ( 1, 1, '1 281 444 5555' , 
1 ) 
GO 
INSERT INTO dbo.tblPhone VALUES ( 1, 2, '55 11 4582 2752', 1) 
GO 
INSERT INTO dbo.tblPhone VALUES ( 1, 3, '1 471 333 1234', 0) 
GO 
INSERT INTO dbo.tblPhone VALUES ( 2, 1, '1 XXX XXX XXXXX', 1) 
GO  CREATE TABLE dbo.tblPhoneType ( 
 codPhoneType TINYINT, 
 PhoneType VARCHAR(50), 
PRIMARY KEY (codPhoneType) 
) 
GO  INSERT INTO dbo.tblPhoneType VALUES ( 1, 'Residential') 
GO 
INSERT INTO dbo.tblPhoneType VALUES ( 2, 'Business') 
GO 
INSERT INTO dbo.tblPhoneType VALUES ( 3, 'Mobile') 
GO 
INSERT INTO dbo.tblPhoneType VALUES ( 4, 'Fax') 
GO    

To make things a bit more interesting, let's also consider our string has to deal 
with some business logic that demands conditional testing. In our example, let's 
say some users may not want to show their numbers in directory listings. The 
field that informs this preference is "dbo.tblPhone.ListThisNumber": when its 
value is 1, it means TRUE, list the number. In case it is 0, it means the number 
should not be listed.  

For our purposes here, in the case where the number should not be listed, we 
would show "***********" instead of the actual number. To improve cursor 
performance, we will declare the cursor using the "FAST_FORWARD" option. 
Putting this all together, the cursor we are talking about would look like this 
when created using T-SQL: 

DECLARE @AllPhones VARCHAR(1000) 
DECLARE @PhoneNumber VARCHAR(20) 
DECLARE @ListThisNumber TINYINT 

DECLARE curPersonalPhones CURSOR FAST_FORWARD FOR  
SELECT PhoneNumber , ListThisNumber  
FROM dbo.tblPhone 
WHERE codUser = 1 



The Best of SQLServerCentral.com – Vol.7 

38 
 

OPEN curPersonalPhones  
FETCH NEXT FROM curPersonalPhones  
INTO @PhoneNumber, @ListThisNumber 

SET @AllPhones = '' 
WHILE @@FETCH_STATUS = 0  
 BEGIN 
 IF @ListThisNumber = 0  
 SET @PhoneNumber = '***********' 
SET @AllPhones = @AllPhones + @PhoneNumber + ' & ' 

 FETCH NEXT FROM curPersonalPhones  
 INTO @PhoneNumber, @ListThisNumber 
 END 
 
CLOSE curPersonalPhones  
DEALLOCATE curPersonalPhones  SELECT @AllPhones 
GO   

To make the code simpler, I defined the cursor for one fixed User (codUser = 
1) and also disregarded the fact the string will always end with an ampersand 
("&").  

But now we will see an easier way to do it in T-SQL. When concatenating 
variables, instead of using cursors, you could use a SELECT statement over the 
same table, storing the content of field (PhoneNumber) into a variable and 
concatenating this with the same variable.  

This example is well described in many, many articles throughout the web. But 
how can this deal with the business logic? As the logic in this code is pretty 
simple, we can use a CASE function within the SELECT statement to have the 
same result. So, the new code will look like this: 

DECLARE @AllPhones VARCHAR(1000) 

SET @AllPhones = '' 
SELECT @AllPhones = @AllPhones +  
CASE WHEN P.ListThisNumber = 1  
THEN P.PhoneNumber  
ELSE '***********' 
END 
+ ' & ' 
FROM dbo.tblPhone P 
WHERE codUser = 1  SELECT @AllPhones 
GO   

In this particular case, not only is the second code is simpler, but it is also much 
faster than the cod using a cursor. If you are curious enough, check the 



The Best of SQLServerCentral.com – Vol.7 

39 
 

execution plan for each set of code. There you should look first for the 
Estimated Subtree Cost. (If you are not familiar to execution plans, keep in 
mind Estimated Subtree Cost represents the total cost for the query optimizer to 
execute the current "batch", combining CPU cost and also I/O cost). 

You will see that, although we declare the cursor to be as fast as possible, that 
code has an Estimated Subtree Cost of 0.0032853 for each iteration, or in other 
words, each record in the cursor. In this example, we have 4 records, so we 
have to sum the cost of each iteration to know the cost of the whole loop. 

In the other hand, for the second code, which does the exactly same output, the 
Estimated Subtree Cost is 0.0032859 , or roughly the same number we saw 
before. But notice this number represents the overall cost, as there is no loop! 
So, the second approach performed a lot better then the one using cursors. And 
it will be even better as the table we are querying grows bigger. 

One important remark here: depending on the complexity of the business logic, 
it might turn out to be not possible to put it all together within a single SELECT 
statement. In those situations, we might have to keep the cursors in our code. 
This should not sound as a complaint. That's what cursors are for. We should be 
glad T-SQL has this feature so we can use it wisely. 

CASE 2 - When using DML statements within Cursors. 

DML (or Data Modification Language) statements include INSERT, UPDATE 
and DELETE statements. Some RDBMS vendors recommend using cursors 
together with DML statements to make sure they will run one record at a time. 
You can easily find examples of this when browsing the online documentation 
of many RDBMS's. As safe as it might sound, this can be tremendously slow. 
There are many situations where you can change those statements to handle 
several records at a time with no effort.  

Let's see another example. We will use cursor to handle the data insertion into 
table "dbo.tblPhone". Consider the table "SouthHemisphere.tblPhone" has 
exactly the same structure as "dbo.tblPhone", although it collects data from 
customers who live in the South Hemisphere. We need to move this data to 
"dbo.tblPhone", which stores information for all customers through out the 
world. In this example, I tested the code moving 8 new records from 
"SouthHemisphere.tblPhone" to "dbo.tblPhone". Below you see the code: 



The Best of SQLServerCentral.com – Vol.7 

40 
 

DECLARE @codUser INT 
DECLARE @codPhoneType TINYINT 
DECLARE @PhoneNumber VARCHAR(20) 
DECLARE @ListThisNumber TINYINT 

DECLARE curInsertion CURSOR FAST_FORWARD FOR  
SELECT codUser, codPhoneType, PhoneNumber, ListThisNumber 
FROM SouthHemisphere.tblPhone 

OPEN curInsertion  
FETCH NEXT FROM curInsertion  
INTO @codUser, @codPhoneType, @PhoneNumber, @ListThisNumber 

WHILE @@FETCH_STATUS = 0  
 BEGIN  
INSERT INTO dbo.tblPhone 
 SELECT @codUser, @codPhoneType, @PhoneNumber, @ListThisNumber 
 WHERE @PhoneNumber NOT IN (SELECT PhoneNumber FROM 
dbo.tblPhone)  
FETCH NEXT FROM curInsertion  
 INTO @codUser, @codPhoneType, @PhoneNumber, @ListThisNumber 
 END 
 
CLOSE curInsertion  
DEALLOCATE curInsertion  
GO   

I did not include a transaction in this piece of code to keep it as simple as 
possible. But, of course, inserting one record at a time will give you more 
control over the process, as you can commit or rollback each individual row. 
But analyzing its execution plan, you see there will be a cost for each fetch 
(Estimated Subtree Cost = 0.0032908) plus the cost for each insert (0.0132976). 
This cost will exist either we insert the new record or not. Finally, we will have 
a final fetch, which will define the end of the loop. This also has a cost. 

Doing the math, we will have the estimated cost of for each record times the 
number of 8 records plus the cost of the final fetch. The overall estimate cost is 
0.1460048. The other approach is to insert all records at once. So, if you have 
transaction in the code, either you commit all records or you rollback them all. 
The INSERT statement will look like this: 

INSERT INTO dbo.tblPhone 
SELECT S.codUser, S.codPhoneType, S.PhoneNumber, 
S.ListThisNumber 
FROM SouthHemisphere.tblPhone S 
WHERE S.PhoneNumber NOT IN (SELECT PhoneNumber FROM 
dbo.tblPhone)   



The Best of SQLServerCentral.com – Vol.7 

41 
 

Besides being a lot simpler, the cost for this statement to insert the same 8 
records will be 0.0298601, much faster than the previous one. As pointed out, 
the cons in this approach is that we do not have any control in the record level. 
It works as a batch: either all records are successfully inserted or they all fail. 

Putting it all together. 

Well, I showed a lot of numbers and I do agree this get a bit confusing. Those 
are real numbers (in the mathematical sense also) and it is hard to believe we 
humans should be able to handle such a thing. 

Below I show a table with the Estimated Subtree Cost for all 4 scripts. 
Numbers represent the total cost for the whole script, as I added the cost of 
each statement within the script. 

Estimated Cost for Each Script 
c1 c2 c3 c4 c5 

Script # of Affected Rows Total 
Estimated Cost 

with Cursor 

Total  
Estimated Cost 
without Cursor 

Difference  
(c3-c4)/c4 

% 

CASE 1: Concatenate string 4 0.0131412 0.0032859 300% 
CASE 2: DML statements 8 0.1460048 0.0298601 389% 

Please, remember you should not take those numbers for granted. They are 
valid solely for the scripts shown in this article. You should do the same kind of 
assessment for your own scripts and analyze the performance of those scripts. 

Every Rule has an Exception 

OK, from the syntax standpoint, replacing cursors looks nice and neat. From 
the performance standpoint, replacing cursors may boost your performance. 
But when replacing cursors, we are letting go some important features that only 
cursors can provide to your code. 

Besides, remember every rule has an exception. You should not take the avoid-
cursors advice as rule, but as a hint. Each situation deserves attention, as you 
can have a fast and well-designed code using cursors. And, in the other hand, 
you can also find poor-performance codes specially created to avoid cursors. 



The Best of SQLServerCentral.com – Vol.7 

42 
 

Whenever you suspect your code is not running as expected, no matter it uses 
cursors or not, you should check your code's execution plan. This is the 
ultimate information you have to assess your code's performance. 

DAC - What to Execute when 
Connected? 
By Rudy Panigas 

If your SQL server is in trouble and you cannot connect then the next option is 
to connect with the Dedicated Administators Connection (DAC). Once 
connected, you can collect some information on what is happening. Since you 
are under pressure, it would be nice to have a stored procedure to execute that 
displays information? Below is my script that does just that. 

You want to execute the code below in the MASTER database to create the 
sp_dba_DAC stored procedure. We do this in MASTER because you generally 
have access to this database when the server is extremely busy. Now open a 
CMD/DOS window and execute the following. 

sqlcmd -A -S<server/instance name> -dmaster -E -Q"sp_dba_DAC" -
oc:\dac-results.txt   

Replace the <server/instance name> with your server or instance name. 

Once you execute this command, a connection is made to the server/instance 
and the stored procedure "sp_dba_DAC" located in the MASTER database is 
executed. A file called "dac-results.txt" is created in the root of C: and the 
connection is terminated. 

Open the "dac-results.txt" file with notepad (or any other editor) and you can 
quickly see the information. 

Below is what is collected 

• Shows SQL Servers information  

• Shows top 5 high cpu used statemants  

• Shows who so logged in  



The Best of SQLServerCentral.com – Vol.7 

43 
 

• Shows long running cursors  

• Shows idle sessions that have open transactions  

• Shows free space in tempdb database  

• Shows total disk allocated to tempdb database  

• Show active jobs  

• Shows clients connected  

• Shows running batch  

• Shows currently blocked requests  

• Shows last backup dates  

• Shows jobs that are still executing  

• Shows failed MS SQL jobs report  

• Shows disabled jobs  

• Shows avail free DB space  

• Shows total DB size (.MDF+.LDF)  

• Show hard drive space available  

Remember to create this stored procedure on your servers before you need to 
connect with DAC. Add additional stored procedure(s) or T-SQL code to 
provide even more information. 

Note: This code is at www.sqlservercentral.com 

Getting a Clue about Your Databases 
By Gregor Borosa 

Introduction 

Once in a while most of us get a task to "get some data out of some database". I 
don't know if it's just me, but I keep asked to work with databases I know 
nothing about. I usually have no documentation and no knowledge about the 
data model, naming conventions, nothing much at all. Usually I only have some 
vague information about the things I am looking for, e.g. "all customer's data 
from our legacy web shop database" in which case I already expect to find 



The Best of SQLServerCentral.com – Vol.7 

44 
 

some usual customers and orders related tables, like Customers, Companies, 
Countries, Orders, etc. However one can easily be lost among all the tables and 
columns. 

So in order to make some starting point from which I could learn more about 
these databases, I've made three little stored procedures, each getting me more 
detailed information about the objects I'm exploring. I imagine these things 
might be more elegant to do in other tools, but I only have SQL Server 2000 at 
my disposal. 

The idea is this: you have a database, but don't know which tables to look at, 
so first try to find the interesting ones (or at least narrow your candidate list). 
When you know which tables to analyze, then you need to know if these tables 
are somehow linked to others, so you check dependencies on them - as much as 
you need to (which might not always be very straightforward or easy using 
queries). Then you would like to get a feeling about which columns are most 
likely be worth checking out, so you try your luck finding similarly named 
columns.  

The results will of course very much depend on each situation, but since the 
Items table usually has some columns named like %item%, then it might be 
worth checking the tables with similar names. During the process, a list of 
candidate tables is to be analyzed: how big, what columns, how many distinct 
values etc. While not always 100% accurate, the figures given are enough for 
the purpose - which is what matters anyhow. At the end, there will be some 
manual work with scrolling through the results, but nothing of overkill. 

Since we are looking for tables which are somewhat central to the database, 
where all the"good data" lies, have lots of rows and lots of dependencies, we 
can guess that such tables will have at least a few similarly named columns. 
They are good candidates to review. If I'm looking at a standard Orders table, 
there will most likely be a column named something very close to [Customer 
No.]. Exactly the same column name will then probably be used elsewhere in 
the database, everywhere a customer is important. And that is what we're 
looking for in the first place. 

Big tables and dependencies 

The first procedure is an already known BigTables procedure, based on the 
system procedure sp_spaceused. I've modified and slightly expanded Bill 
Graziano's code (http://www.sqlteam.com/article/finding-the-biggest-tables-in-

http://www.sqlteam.com/article/finding-the-biggest-tables-in-a-database�


The Best of SQLServerCentral.com – Vol.7 

45 
 

a-database

Note: This code is at www.sqlservercentral.com 

). This procedure lists top tables by their size (row count, space 
reserved/used and index size), while also displaying the number of dependant 
objects of each table. This is providing an important hint about the table, 
because "big tables" might only be some kind of dumps of data, let's say 
images (lots of disk space), or some tally tables (lots of rows) etc. But if I know 
that one particular table is used in some views or stored procedures, I can more 
accurately narrow my focus. 

Sample results are on the picture below: 

 

Note: while right-clicking on a table in Enterprise Manager or Management 
Studio and displaying dependencies is the most straightforward thing to do to 
check dependant objects, doing so with a query in SQL 2000 is not so elegant. 
There's a system stored procedure sp_depends which uses sysdepends table and 
a much more revealing, but undocumented procedure sp_msdependencies, 
which consists of a pile of code I'm not even trying to grasp, so I'm just using 
sp_msdependencies to fill a temporary table. Unfortunately, this might trigger 
some not really harmful errors, so I also included a snippet for using 
sp_depends, just in case you don't like to see any errors whatsoever). I hate to 
say it, but: ignore the errors and review query results. 

Searching for similarly named columns 

The purpose of the second procedure is finding tables with similar column 
names. It lists all columns of a given table, avoiding some data types (images, 
timestamps etc.), and not minding the columns not used in indexes in linked 
tables. That is for narrowing our results. If you don't get enough rows with 
potentially linked tables, you can try commenting out the line with the join on 
sysindexes table and/or trying partial matches to column names with %s. 

Note: This code is at www.sqlservercentral.com  

Sample results are on the picture below: 



The Best of SQLServerCentral.com – Vol.7 

46 
 

 

Note: also check foreign keys, of course. 

Narrowing on a table level 

The third procedure returns some handy data about one chosen table, which 
might be of value especially if you would like to cancel out empty or almost 
empty columns (you've seen your tables with few hundred columns, most of 
those not really used). It provides data about the number of indexes, 
dependencies (again, review query results, ignore possible errors from 
sp_msdependencies), rows, columns and distinct entries in a column. 

Note: This code is at www.sqlservercentral.com 

Sample results are on the picture below: 

 

Note: with the results here one can easily get a sense of what's the deal with the 
table "KommTrans". Everything's stored in T_DATE field. Other columns are 
most likely of little use (regarding the content-oriented user). 

Conclusion 



The Best of SQLServerCentral.com – Vol.7 

47 
 

It might take few seconds for all this to finish on let's say hundreds of tables, 
but be aware when dealing with larger numbers, as it might be a good idea to 
fine tune the queries to your situation (I've run it on 200 GB database with 
30,000 tables: it took 5 hours to check dependencies!) - more precisely: re-
think how you want to check object dependencies. These procedures can be 
something to start from, but they were valuable for me a couple of times so 
far. I've done this in SQL 2000 - it works on 2005 also, but there might be 
easier ways to do this in SQL 2005. One funny note: sp_msdependencies is 
behaving quite well in SQL 2005, at least in my experiments I got no errors. 

Ordering Tables to Preserve Referential 
Integrity 
By Glen Cooper 

When merging two databases with the same schema, primary keys may have 
the same values in both databases, yet represent unrelated records. Typically 
you would carry over such keys as legacy values, re-create new ones in the 
target database, and then re-calculate all foreign keys that reference them in 
related tables. But in what order should these tables be ported to avoid violating 
referential integrity in the target database? Consider the following schema for a 
customer database (Fig. 1):  

 
Fig. 1 



The Best of SQLServerCentral.com – Vol.7 

48 
 

If this database is appended to another database having the same schema, all 
primary keys in the source database must be re-calculated to new values in the 
target database to avoid clashing with existing values. Furthermore, all foreign 
keys pointing to them from other tables must also be re-calculated so they 
continue referencing the same records as before. That's the easy part.  

The hard part is figuring out the order these tables should be ported.  

In the example above, the Customer table must be ported before the 
Customer_Address table so that referential integrity won't be violated in the 
target database. In other words, when porting the latter table, all records from 
the former table must already be present so that the foreign key in the latter 
table can be re-calculated using the legacy values from the original table. 
Otherwise the insertions will fail.  

We want to assign a "level" to each table, so that if they're ported by ascending 
level then no violations of referential integrity will occur. In the above 
example, it's easy to see that the following assignment of levels will do that:  

Level Table Abbreviation 

0 Customer C 

0 Employee E 
0 Supplier S 

1 Customer_Address CA 

1 Invoice_Header IH 
1 Inventory I 

1 Supplier_Address SA 

2 Inventory_Order IO 

2 Invoice_Sublet IS 
2 Invoice_Task IT 

2 Invoice_Item II 

2 Related_Part RP 

 

Here the Customer, Employee and Supplier tables may be ported in any order 
(so long as they're ported first). Ditto for Customer_Address, 
Invoice_Header, Inventory, and Supplier_Address (so long as they're ported 



The Best of SQLServerCentral.com – Vol.7 

49 
 

next). But Invoice_Item must be ported later since it has a foreign key pointing 
to Invoice_Header.  

Furthermore, it's easy to see that this assignment of levels is "optimal" in the 
sense that each table receives the lowest possible assignment.  

The following script computes an optimal assignment of levels that preserves 
referential integrity. To explain how it works, it's helpful to use the language of 
partially-ordered sets (see http://en.wikipedia.org/wiki/Partially_ordered_set 
for an overview of posets).  

Suppose that Invoice_Header has a foreign key pointing to Customer. We can 
represent this dependency as:  

Customer < Invoice_Header  

where the "smaller" table Customer must be ported before Invoice_Header.  

Suppose also that Invoice_Item has a pointer to Invoice_Header.  

Then Invoice_Header < Invoice_Item.  

Of course, this now implies that Customer must always be ported before 
Invoice_Item even though there's no direct link between them.  

To formally describe this "transitivity of dependency", recursively define the 
relationship << as:  

A << B if A < B  
A << B if A < C and C << B for some C  

Prolog programmers will recognize these "axioms" as the classical ancestor 
relationship. In particular, Customer << Invoice_Item. More generally, << is a 
partial order expressing what tables must be ported before others, even if there's 
no pointer between two tables satisfying this relationship.  

It's easy to demonstrate that << defines a partial order since closed loops in < 
(called a preorder) aren't possible for tables with data in them. Note that two 
tables violating referential integrity can still co-exist providing that no records 
have been inserted into either of them (and of course, it will always remain that 

http://en.wikipedia.org/wiki/Partially_ordered_set�


The Best of SQLServerCentral.com – Vol.7 

50 
 

way). This remote possibility is addressed by the script because otherwise 
they'll cause infinite loops.  

To port these tables while respecting their dependencies, it's sufficient to list 
them in such a way that each table appears "before" those that are "larger" in 
the partial ordering <<. That's what the script does. The so-called Hasse 
diagram in Fig. 2 displays the above preorder (with arrows representing <). It 
will show us how to assign the table levels.  

 

Fig. 2 

What we first do is add a fictional table F (see Fig. 3) and enough virtual 
arrows so that every non-fictional table points to at least one other table 
(possibly fictional). By using this trick we'll avoid special cases. This virtual 
object is reminiscent of the well-known "point of infinity" in non-Euclidean 
geometry since its purpose is to simply appear "bigger" than anything else in 
the database for the purposes of the script.  



The Best of SQLServerCentral.com – Vol.7 

51 
 

 

Fig. 3 

Then we select those tables to which no arrow points, assign a level of 0 to 
them, and remove them from the diagram (along with all arrows connected to 
or from them). These are the tables that can be ported first, since no other tables 
depend on them.  

For example, we would remove S and its two arrows. But since arrows are 
represented in the script by rows of an SQL Server table whose columns define 
the "to" and "from" tables, SA would suddenly disappear if the fictional table 
weren't present (so SA would never be part of the final answer). That's why we 
have F.  

After this we start all over with whatever remains, but assign a level of 1. Note 
that SA has been assigned a level of 1 at this point, but it could never be 
assigned anything lower because an incoming arrow was originally present 
(from S). In particular, each table will be assigned its own level "just in time". 
In fact, levels are just the longest path lengths of any table to one of level 0, if 



The Best of SQLServerCentral.com – Vol.7 

52 
 

you follow the arrows backwards. We continue this way until no more elements 
remain. Then we remove F from the answer.  

Note: The script is available from www.sqlservercentral.com 

I've used permanent tables to compute the answer (instead of table variables) so 
readers can verify the computations as the script proceeds (the last two lines 
will need to be deleted for this). Furthermore, since preorders appear naturally 
in computing, the script can be used for other purposes where you want to 
know the level of each object in such relationships (simply replace the snippet 
that uses SQL Server's sys.foreign_key_columns with one of your own). For 
the mathematically inclined, this exercise determines the maximum cardinality 
of ancestor chains for every point in a preorder.  

This technique was used to join 17 faculty departments in a major university, 
where special processing was required on each lookup table (e.g. academic 
titles) since incompatible values were used before they were merged. 

Creating a recycle bin for SQL Server 
2005\2008 
By Chris Kinley 

Introduction 

Recently while being shown around Oracle 10G (yes I said the 'O' word) I 
noticed that this product has a recycle bin. This recycle bin which stores only 
dropped tables falls under the Oracle flashback technology umbrella. 

I was pretty sure I could do the same in SQL server using DDL triggers and 
schemas and prevent accidental drops of other objects as well. This article is 
the result of that challenge. 

In a nutshell the SQL Server recycle bin is a combination of two schemas 
which act as bins (recycle bin and trash can) and a DDL trigger which 
determines which bin to place the dropped object (which is not dropped but 
renamed). A stored procedure (sp_undrop) is used to revert the object to its 
original name and schema. 



The Best of SQLServerCentral.com – Vol.7 

53 
 

Functional overview 

The recycle bin holds one only copy of the most recent version of a dropped 
object (table, view, stored procedure or function). The trash can holds older 
versions of the object if the object has been dropped more than once. The trash 
can be purged regularly with a scheduled task consisting of a simple script. 

• The UNDROP command will revert the most recent dropped copy of 
an object to its original location.  

• If a DROP is performed on an object already in the recycle bin the 
object is moved to the trash can.  

• If a DROP is performed on an object already in the trash can the DROP 
is ignored.  

Figure 1 shows the Sales.vIndividualDemographics view with the most recent 
drop in the recycle bin and older versions in the trash can. 

 

Figure 1 A view of recycle bin and trash can objects 

Technology overview 

The SQL Server recycle bin protects spurious drops of tables, views, stored 
procedures and user defined functions. To enable the recycle bin the following 
is needed: 

• Two schemas. One for the recycle bin and one for the trash can.  

• One DDL trigger. This database level trigger manages objects into the 
recycle bin and trash can.  



The Best of SQLServerCentral.com – Vol.7 

54 
 

• One stored procedure. This is the undrop functionality and is best 
mounted in the master database.  

Via the DDL trigger the dropped object is renamed and then moved to the 
recycle bin schema and the original transaction rolled back. All the information 
needed to undrop the object is stored in the new name so no additional 
metadata tables are needed. 

Schemas for recycle bin and trash can 

The recycle bin and trash can are simply schemas (created by the DBA as a 
prerequisite). The main DDL trigger will check for the existence of these 
schemas and abort the DROP if they don't exist. For this article I have used 
schema names starting with 'z' which keeps them at the bottom of the explorer 
view (see Figure 2 below). 

Tip: The schema names for the recycle bin and trash can are declared as 
constants in the trigger and stored procedure. Feel free to choose your own but 
check they match up across all code. 

USE [AdventureWorks] 
GO 
CREATE SCHEMA [zz_RecycleBin] AUTHORIZATION [dbo] 
GO 
CREATE SCHEMA [zzz_TrashCan] AUTHORIZATION [dbo] 
GO   



The Best of SQLServerCentral.com – Vol.7 

55 
 

 

Figure 2 Recycle bin and trash can schemas 

Creating the main DDL trigger 

This article assumes a working knowledge of DDL triggers. For a refresher on 
this feature see http://www.sqlservercentral.com/articles/SQL+Server+2005+-
+Security/2927/ . A full code listing (commented) of this trigger is provided as 
a resource with this article. We will now walk through the main sections. Only 
one DDL trigger with database scope is required. 

The trigger does the following: 

• Checks for the existence of the recycle bin and trash can schemas.  

• Captures the data about the dropped object.  

• Builds a new object name which is the name it will have while in the 
recycle bin.  

• If needed changes the schema of an old version of the object in the 
recycle bin to the trash can.  

• Renames the dropped object.  

http://www.sqlservercentral.com/articles/SQL+Server+2005+-+Security/2927/%2520�
http://www.sqlservercentral.com/articles/SQL+Server+2005+-+Security/2927/%2520�


The Best of SQLServerCentral.com – Vol.7 

56 
 

• Changes the schema of the dropped object to that of the recycle bin.  

First create the trigger. The trigger is at the database scope level. 

Note: This code is at www.sqlservercentral.com 

Then check to see if the recycle bin and trash can schemas exist. No point 
continuing if they don't. 

Note: This code is at www.sqlservercentral.com 

The next step is to extract the information need from EVENTDATA(). We're 
interested in: 

• What was dropped (both schema and object name)?  

• Who dropped?  

• When dropped?  

Then build up the object name as it would exist in the recycle bin. The format 
using the delimiter _$_ is:originalschema_$_originalname_$_domain@login 
_$_yyyy_mm_ddThh_mm_ss_sss 

So the Sales.vIndividualDemographics view dropped by kinleyc on March 23 
at 10:20:41 would be renamed to: 
Sales_$_vIndividualDemographics_$_DOMAIN@kinleyc_$_2009_03_23T10
_20_41_997 

Note: This code is at www.sqlservercentral.com 

There is another check to see if the object being dropped is already in the trash 
can. If so the drop is aborted by issuing a ROLLBACK followed by a 
RETURN thus ending the trigger. I've chosen to engineer this way for the 
following reasons. Firstly it prevents objects from ever being dropped unless 
the DBA explicitly disables the trigger. Secondly forcing a drop would again 
fire the same trigger recursively and the code would have to be made more 
complex to allow for this. 

IF @schema_name = @CONST_TRASHCAN_SCHEMA_NAME   
BEGIN 
PRINT 'This object is already in the trash can '   
PRINT 'The trigger recyclebin_drop_object must be disabled for 



The Best of SQLServerCentral.com – Vol.7 

57 
 

this DROP to work'   
ROLLBACK   
RETURN   
END   

Now we come to the core part of the trigger where the main rename and 
transfer takes place. There are checks here to determine if the object being 
dropped is a recycle bin object or the object is in a non-recycle bin schema and 
an older version exists in the recycle bin. If it is an explicit drop of an object 
already in the recycle bin then no rename takes place and only a schema 
transfer to the trash can is invoked. If there is an older version of the object in 
the recycle bin then this is moved to the trash can to make 'space' for the new 
object coming in. All renames and transfer commands are prepared before 
initiating a transaction. 

Note: This code is at www.sqlservercentral.com 

It's time now to rollback the original transaction. Remember that all triggers 
have a transaction in progress when they are invoked. Usually it's 
autocommited when the trigger completes but in our case we want to stop the 
original drop and do our own thing. 

ROLLBACK   

For the final rename\transfer I've elected to use a nested transaction within the 
trigger the reason being I want the rename and transfer to be an all or nothing 
event. I've kept the transaction very short, within a try block and am not doing 
validation within the transaction except for variables. 

See books online: ms-
help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_1devconc/html/650105c1-
32fd-4f16-8082-f391c42c3fb0.htm for information on transactions in triggers. 

Note: This code is at www.sqlservercentral.com 

The catch block is taken directly from books online to allow for uncommittable 
transactions. See books online: 

ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_6tsql/html/e9300827-
e793-4eb6-9042-ffa0204aeb50.htm 



The Best of SQLServerCentral.com – Vol.7 

58 
 

Following the catch there are some PRINT statements back to the DBA to see 
the new object name. 

Note: This code is at www.sqlservercentral.com 

I've chosen to start a new transaction at the end of the trigger. This is solely to 
prevent to 3609 error when the trigger detects @@trancount = 0. The trigger is 
in autocommit mode so this dummy transaction is committed when the trigger 
ends. If you don't want to have it there and are OK seeing the 3609 error then 
remove this line. The result is the same the recycle bin will still work. The 
books online article for triggers mentioned above discusses this error. 

BEGIN TRANSACTION   
END   

Figure 3 below shows different objects being dropped and the results in the 
query results window. 

 
Figure 3. 

  



The Best of SQLServerCentral.com – Vol.7 

59 
 

The UNDROP 

It's no surprise that the undrop functionality is basically a reverse of the process 
from the recycle bin trigger. The undrop does not involve the trash can. 

I chose to name the stored procedure sp_undrop and mount it in the master 
database so it can be called from any user database. Books online recommends 
not naming stored procedures with the sp_ prefix as they may clash with future 
system stored procedures. I figure if Microsoft introduces similar functionality 
they will use UNDROP as the command - that's my excuse anyway. 

The full code listing (commented) of this stored procedure is provided as a 
resource with this article. 

There are two input parameters, the combination of which makes the object 
unique in the database. Note that the @undropname parameter includes both 
the schema and name. An example of the stored procedure invocation. 

EXEC SP_UNDROP @undroptype = 'PROCEDURE' , @undropname = 
N'HumanResources.uspUpdateEmployeeHireInfo'   

 

USE MASTER   
GO   
CREATE PROC [dbo].[SP_UNDROP]  
@undroptype varchar(10) =NULL  
, @undropname nvarchar(200)=NULL   
AS   

Two tables are used two store initial objects kept in the recycle bin. The first 
table #sysobjects is a temporary table so that it can be called with 
sp_executesql. The second table @object_list is the main storage table for the 
procedure. It stores the recycled name and various components of the original 
name. As this procedure is essentially about parsing there are also columns to 
store delimiter positions. After the initialisation of variables and constants an 
initial check is made to guard against execution in system databases. 

Note: This code is at www.sqlservercentral.com 

Now the two work tables are populated. The table #sysobjects table is loaded 
with recycle bin objects using sys.objects and sys.schemas. The table variable 
@object_list is populated with the same data plus additional information about 



The Best of SQLServerCentral.com – Vol.7 

60 
 

the location of objects in the long recycle bin object name. An object count is 
determined and then the #sysobjects is then dropped. A further update of the 
work table is done to parse out the original object and schema names as well as 
deriving a full object type name. 

Note: This code is at www.sqlservercentral.com 

All the preparation is now done. The main conditional statement now starts and 
determines one of three paths: 

1. At least one parameter is missing and at least one object in recycle bin.  

2. Both parameters supplied and at least one object in recycle bin.  

3. No objects in recycle bin.  

If the first condition is met the procedure lists out all objects in the recycle bin 
with ready-to-go undrop syntax. 

Note: This code is at www.sqlservercentral.com 

EXEC SP_UNDROP results in: 

 

Figure 4 using sp_undrop without parameters 

If the second condition is satisfied a further check is done to make sure the 
object exists. 

ELSE IF (@object_list_count = 0 OR @object_list_count IS NULL)   
BEGIN  
PRINT 'There are no objects in the recycle bin'   
END   

EXEC SP_UNDROP 'TABLE' , 'NOT_A_TABLE' results in: 

http://www.sqlservercentral.com/�


The Best of SQLServerCentral.com – Vol.7 

61 
 

 

Figure 5 using sp_undrop when the object does not exist 

If the objects exists then the undrop is attempted within in a transaction. 

Note: This code is at www.sqlservercentral.com 

Taking out the trash 

At the DBA's discretion the trash can be purged with a basic loop-the-loop 
script inside a scheduled job. There are two items of note in this script. One is 
the disabling and enabling of the DDL trigger to avoid any recursive trigger 
complications. The other is setting the trash can schema name of the 
@TRASHCAN_SCHEMA_NAME which must match the one used in the DDL 
trigger. 

Note: This code is at www.sqlservercentral.com 

Conclusion 

Whether protecting your production databases from unexpected object drops or 
implementing a simple method of storing historical versions of objects this 
combination of schemas and a DDL trigger will do both. 

  



The Best of SQLServerCentral.com – Vol.7 

62 
 

Using SQL Profiler to Resolve Deadlocks 
in SQL Server 
By Jonathan Kehayias 
It's fairly common knowledge that deadlocks in SQL Server are caused by a 
cyclic dependency between multiple processes, threads or sessions, for a set of 
resources in SQL Server. What most people don't realize is that while there are 
many different types of deadlocks, the methods used to resolve them all is 
fundamentally the same. When the deadlock monitor in SQL Server encounters 
a deadlock, it immediately analyzes the processes contributing to the deadlock 
and determines which will be the least expensive to rollback. Once this has 
been determined, that process is killed and a 1205 error is returned to the client. 

The first thing to consider when troubleshooting deadlocks is that a deadlock in 
and of itself is not necessarily a problem. A properly designed and coded 
application will have exception handling built around all connections to SQL 
Server that can intercept the 1205 error and resubmit the deadlock victim 
request back to SQL Server. Generally speaking, the locking scenario that 
existed to cause the deadlock will not exist during the resubmission and the 
transaction will complete successfully the second time around. This however, is 
not actually solving the deadlock, it is just preventing the deadlock from being 
problematic and causing data/productivity losses to occur. 

To properly resolve deadlocks in SQL Server the first that you will need is the 
deadlock graph. In SQL Server 2005, there are two different ways to get the 
deadlock graph. The first way to get a deadlock graph is to enable trace flag 
1222 which is a newer version of trace flag 1204 which existed in SQL Server 
2000 to output deadlock graph information. The output from this trace flag can 
be a bit complex to follow at first if you are not used to reading the information 
contained within it. The second way to get the deadlock graph is to use SQL 
Trace and capture the Deadlock Graph event and save the Deadlock XML 
Events separately from the trace file. This can be done with SQL Profiler in 
real time, or with a scripted server side trace which can be turned on and off as 
needed for deadlock analysis. 

If the deadlocks are fairly frequent and you believe that you can time their 
occurrence, then using SQL Profiler is really fast and simple. First start up the 
application and connect to the SQL Instance in question. Then on the Events 



The Best of SQLServerCentral.com – Vol.7 

63 
 

Selection Tab, add the Locks: Deadlock Graph Event and then remove all of 
the other events from the trace definition. 

 

Then click on the Events Extraction Settings Tab, and check the Save Deadlock 
XML events separately box and specify a path and filename for saving the 
events to. Then select whether you want to save the events all to one file or to a 
separate file for each deadlocking batch. 



The Best of SQLServerCentral.com – Vol.7 

64 
 

 

Then start the trace and wait for Deadlocks to occur and be captured by the 
trace. To simulate one of the more common deadlocking scenarios that I find 
occurring on the forums, attached to this article is a set of scripts to create a 
UPDATE/SELECT deadlock against a single table. 

To simulate the deadlock first run the setup script. Then open the Selecter script 
in one window, and the Updater script in a second window. Then run both the 
Selecter and the Updater scripts. A deadlock will immediately be produced and 
captured by the Profiler Trace as follows: 



The Best of SQLServerCentral.com – Vol.7 

65 
 

 

As you can see, we get a nice graphical display of what occurred during the 
deadlock. In the center are the lock resources involved in the cyclic locking that 
resulted in the deadlocks. The arrows show the lock owners and requestors and 
the ovals show the session_id's or SPIDs participating the deadlock. In the case 
of the above image, SPID 55 which selected as the deadlock victim and was 
killed. This is shown by the big X over the SPID information. If you hover the 
mouse over the SPID you can see the statement that was being executed. What 
this doesn't allow you to do easily is copy the information for further analysis. 
This is where having the extracted event information in XDL format becomes 
very helpful. 

The XDL files output by SQL Trace/ SQL Profiler are just XML documents 
that are the same format as the information returned by trace flag 1222. The 
first place to start troubleshooting deadlocks similar to the one above is to look 
at the execution plans for both of the contributing processes. In this case, the 
plan of interest is for the Selecter process as shown below: 



The Best of SQLServerCentral.com – Vol.7 

66 
 

 

The key point of interest in this Execution Plan is the Key Lookup. When the 
Selecter process runs, it takes a shared lock on the non-clustered index 
[idx_BookmarkLookupDeadlock_col2] to maintain concurrency while it reads 
the data. The problem is that the index is only on one column [col2] and 
therefore does not contain the necessary columns to completely satisfy the 
select statement. Since non-clustered indexes also include the clustered index 
key, they can be used to lookup the missing columns from the clustered index 
using a Key Lookup operation. This will require a shared lock on the non-
clustered index as well as a shared lock on the needed rows in the clustered 
index. 

The deadlock in this type of scenario is completely timing based, and it can be 
difficult to reproduce without a looping execution as used in the attached demo. 
The select process gets the Shared Lock on the non-clustered index, and at the 
same time, the update process gets an Exclusive Lock on the Clustered Index. 
In order to complete, the select will need a shared lock on the Clustered Index, 
which is incompatible with the existing exclusive lock so it is blocked until the 
update completes. However, the update will also require an Exclusive Lock on 
each of the non-clustered indexes that contain the columns being updated, 
which is incompatible with the existing Shared Lock held by the select process, 
so it is blocked. This blocked/blocked situation is the cyclic dependency that 
will never resolve itself, so the deadlock monitor selects the SPID with the least 
cost to rollback, in this case the select and kills the session. This frees the non-
clustered index for the update to complete. 



The Best of SQLServerCentral.com – Vol.7 

67 
 

To resolve this type of deadlock two things can be done. First you can remove 
the non-clustered index which will result in a clustered index scan to satisfy the 
select process, which is not ideal, and bad for performance. The other thing you 
can do is to create a covering index for the select query that contains all of the 
columns needed to satisfy the query. In SQL Server 2005, this can be 
accomplished by using the INCLUDED column list in the index definition. For 
the attached demo, the index definition would be: 

CREATE INDEX idx_BookmarkLookupDeadlock_col2_icol3 
ON dbo.BookmarkLookupDeadlock (col2) 
INCLUDE (col3) 

This allows a single index see to occur to solve the select and prevents the cross 
index lookup from occurring thus preventing the deadlock.  

This is but one of many different ways that deadlocks can occur. Usually, 
deadlocks are caused by a problem in the underlying tables or index structures, 
by accessing tables in reverse order in code, different isolation levels between 
the conflicting SPIDs or a combination of all of the above. Even heap 
allocations with no indexes can be deadlocked against, so the solution isn't to 
just not use indexing. Even with "proper design" it is still possible to have 
deadlocking occur which is why it is crucial for applications to properly handle 
1205 errors generated by the database engine. If a deadlock occurs, a properly 
built application should log the occurrence, but also resubmit the deadlocked 
transaction as a part of handling the error 

What SQL Statements Are Currently 
Executing? 
By Ian Stirk 

Introduction 

sp_who2 is a well known utility that shows what spids are currently executing. 
However the information it shows is relatively limited. For example, it only 
shows the type of command executing as SELECT, DELETE etc, with no 
reference to the actual underlying SQL executing. 



The Best of SQLServerCentral.com – Vol.7 

68 
 

Knowing what SQL is executing can be vital in debugging why a query is 
taking a long time, or determining if it is being blocked. It can also be useful in 
showing the progress of a stored procedure i.e. what statement within the stored 
procedure is currently executing. 

The utility described in this article will obviate these limitations of sp_who2. 

The utility makes use of Dynamic Management Views (DMVs), so can be used 
by SQL Server 2005 or greater. 

What SQL Statements Are Currently Executing Utility 

The SQL used in this utility dba_WhatSQLIsExecuting is given in Listing 1. 

The Dynamic Management View (DMV) sys.db_exec_requests shows which 
requests are currently executing, the information shown includes the handle to 
the whole SQL text of the batch or stored procedure (sql_handle), together with 
offsets relating to the section of SQL within the batch that is currently 
executing (statement_start_offset and statement_end_offset). 

To determine the current section of SQL currently executing, we need to call 
the Dynamic Management Function (DMF) sys.dm_exec_sql_text, passing in 
the handle of the SQL batch that is currently executing, and then apply the 
relevant offsets. 

We can get more information about the query by combining the 
sys.db_exec_requests DMV with the sys.processes system view (joined on 
spid/session_id). This information includes who is executing the query, the 
machine they are running from, and the name of the database. 

The utility selects relevant fields from the sys.db_exec_requests and 
sys.sysprocesses views. The selected fields are described in figure 1 (largely 
taken from SQL Server 2005 Books online). 

Column name Data type Description 
spid smallint SQL Server process ID. 

ecid smallint Execution context ID used to uniquely identify the subthreads 
operating on behalf of a single process. 

dbid smallint ID of the database currently being used by the process. 

nt_username nchar(128) Windows user name for the process, if using Windows 
Authentication, or a trusted connection. 

status nchar(30) Process ID status. For example, running and sleeping. 



The Best of SQLServerCentral.com – Vol.7 

69 
 

wait_type bigint Current wait time in milliseconds. 
Individual 
Query varchar SQL Statement currently running. 

Parent Query varchar Routine that contains the Individual Query. 
program_name nchar(128) Name of the application program. 
Hostname nchar(128) Name of the workstation. 

nt_domain nchar(128) Microsoft Windows domain for the client, if using Windows 
Authentication, or a trusted connection. 

Start_time datetime Time when the request is scheduled to run. 

Figure 1 Columns in the What SQL Statements Are Executing utility. 

Running the utility on my SQL Server gives the results given in Figure 2. 

 

Figure 2 Output from the What SQL Statements Are Executing utility. 

The results show the Parent Query that is running (typically a stored 
procedure), together with the Individual Query within the Parent Query that is 
currently executing. Additional useful information (e.g. database name, user 
name etc) is also shown. 

Discussion 

This utility allows you to observe the progress of a stored procedure or SQL 
batch, additionally it can be used to identify the cause of a long running query 
or blocking query. 

Since the utility uses existing data held in DMVs it is relatively non-intrusive 
and should have little effect on performance. 

If the identified queries are long running or causing blocking, it might be 
worthwhile running them inside the Database Tuning Advisor (DTA), this 
might identify the cause of the slow running (e.g. a missing index). 

Further work 



The Best of SQLServerCentral.com – Vol.7 

70 
 

It is possible to extend this utility to report only on the database you are 
interested in, by providing a filter based on database name or database id. 

It might be interesting to use the output to drive a trace and/or process-flow 
engine. This will report on process flow through a stored procedure, and could 
be useful in determining how much code has been hit/missed during testing, as 
well as getting a view on what code is executed for a given run/set of 
parameters. 

Conclusion 

The utility described in this article will allow you to identify what SQL 
statements are currently executing. This information can be useful in debugging 
the cause of both long running queries and blocking, and should prove valuable 
in the everyday work of the SQL Server DBA/developer 

 Credits 

Ian Stirk has been working in IT as a developer, designer, and architect since 
1987. He holds the following qualifications: M.Sc., MCSD.NET, MCDBA, and 
SCJP. He is a freelance consultant working with Microsoft technologies in 
London England. He can be contacted at Ian_Stirk@yahoo.com. 

Note: This code is at www.sqlservercentral.com 

Duplicate Records using SQLCMD 
By Renato Buda 

Overview 

This article presents an approach to showing and deleting duplicate records that 
is concise, generic and efficient. It uses some features that were introduced in 
SQL Server 2005. 

  

mailto:Ian_Stirk@yahoo.com�
http://www.sqlservercentral.com/�


The Best of SQLServerCentral.com – Vol.7 

71 
 

History and Background 

Dealing with duplicate records in a table is a subject that has been covered 
many times in SQLServerCentral and elsewhere. Four good articles are listed 
below. 

• ‘Removing Duplicate Rows’ By Neil Boyle, 2001/05/14. This covers a 
number of different methods for removing duplicates with an examples 
of each method. 
(http://www.sqlservercentral.com/articles/Advanced+Querying/remove
duplicate/207/).   

• ‘Finding and Deleting Duplicate Data’ By Chris Cubley, 2003/07/25. 
This is a great article that covers identifying and efficiently removing 
duplicate data using an example from a Payments table. 
(http://www.sqlservercentral.com/articles/Miscellaneous/findinganddel
etingduplicatedata/1075/

• ‘Remove Duplicate Records’ By Syed Iqbal, 2008/05/26. This article 
presents a novel method for removing duplicates that involves a 
WHILE loop that deletes one record at a time. 
(

) 

http://www.sqlservercentral.com/scripts/T-SQL/62866/

• ‘Handle Duplicate Records’ By Erik Andersen, 2009/01/07 presents a 
nested cursor based solution that gives the DBA a chance to insert logic 
to combine records or audit deletions. 
(

) 

http://www.sqlservercentral.com/scripts/duplicate+records/65381/

Why did I want to re-visit this subject again when it has been covered so many 
times? 

) 

There are two features that were introduced with SQL Server 2005 that can be 
applied to the duplicates problem and allows an efficient piece of code that 
does not need much modification to deal with each different real table. 

The row_number() function can allow a flexible identification of different 
records within a group.  

SQLCMD mode with SETVAR allows table names and column lists to be 
replaced in scripts without the use of dynamic SQL  

http://www.sqlservercentral.com/articles/Advanced+Querying/removeduplicate/207/�
http://www.sqlservercentral.com/articles/Advanced+Querying/removeduplicate/207/�


The Best of SQLServerCentral.com – Vol.7 

72 
 

The row_number() function allows records in a duplicate group to be 
distinguished in a generic fashion that does not rely on cursors or any particular 
distinguishing column. This is illustrated in the examples below. 

The use of SETVAR in SQLCMD mode allows SQL statements to be written 
generically, with variable table and column names but without using dynamic 
SQL. This means the script can be used without needing to re-write parts to 
handle different situations. Using the script is just a matter of changing the 
SETVAR statements. The script is easier to read than dynamic SQL, especially 
in Management Studio because the query editor still color-codes the keywords. 

Note that SETVAR cannot replace dynamic SQL in all situations because 
SETVAR can only accept a constant value, not a variable or expression on the 
right hand side, 

Let's get to the script without more ado. 

The Script Sections 

The following script does four things: 

1. Set the SQLCMD variables using SETVAR.  

2. Counts the duplicates in $(TableName) based on $(UniqueColumnList)  

3. Displays a sample of the duplicates. 
The sampling is controlled by $(SampleSize) and 
$(MaxRowsPerGroup).  

4. Deletes the duplicates. Generally I leave this commented out until I'm 
sure that I want to delete.  

Section 1: The SETVARs 

:SETVAR TableName Person.Contact -- Name of table to de-
duplicate 
:SETVAR UniqueColumnList "FirstName, Phone" -- Comma separated 
list of columns 
:SETVAR JoinCondition "T1.FirstName=T2.FirstName AND 
T1.Phone=T2.Phone" -- Use in WHERE clause to show sample 
:SETVAR SampleSize 20 
:SETVAR MaxRowsPerGroup 2    



The Best of SQLServerCentral.com – Vol.7 

73 
 

The SETVAR parameters above are designed to be used in the 
AdventureWorks database to find cases where the Person.Contact table has 
records with duplicate combinations of the FirstName and Phone columns. 
When displaying duplicates a sample of 20 duplicates is displayed with only 2 
records in each duplicate group. 

TableName is the name of the table containing duplicates. It can be any table 
name even using 3 or 4 part names. Square brackets are needed if the table 
name contains special characters. 

The UniqueColumnList is the list is the list of columns whose values should 
be unique .Note that when using SETVAR, any values containing spaces must 
be surrounded by double quotes. 

The JoinCondition is the UniqueColumnList translated into the form required 
to use in a self join between two aliases, T1 and T2. This is used when 
displaying a sample of duplicates.It is possible to derive the JoinCondition from 
the UniqueColumnList, but that would mean using dynamic SQL so it makes it 
harder to read and present. 

The SampleSize and MaxRowsPerGroup parameters control how many 
duplicates are displayed - (in case you get thousands). 

When you use SETVAR in Management Studio you need to use SQLCMD 
mode. In MS 2005 it is a toolbar button. In MS 2008 it is under the Query 
menu. If you don't do this you will get error messages because the :SETVAR 
and $(varname) syntax is not understood 

Section 2: Count the Duplicates 

SET NOCOUNT ON; 
PRINT 'Count / show / delete duplicates records from 
$(TableName) based on ($(UniqueColumnList))'; 
-- 1. Count the duplicated records 

-- This is the number of records that will be deleted 
-- For example if there are five records in a group with 

-- the same values for $(UniqueColumnList) this counts four 

WITH DupCounts AS 
( SELECT _RowNum_ = row_number() 
OVER ( 
PARTITION BY $(UniqueColumnList) 
ORDER BY $(UniqueColumnList) ),* 



The Best of SQLServerCentral.com – Vol.7 

74 
 

FROM $(TableName) 
) 
SELECT CountOfDuplicateRows = count(*) FROM DupCounts WHERE 
DupCounts._RowNum_ > 1; 

Section 3: Show a Sample of the Duplicates 

-- 3. Show a sample of the duplicated records 
WITH DupCounts AS 
( SELECT _RowNum_ = row_number() 
OVER ( 
PARTITION BY $(UniqueColumnList) 
ORDER BY $(UniqueColumnList) ),* 
FROM $(TableName) 
) 
SELECT TOP ($(SampleSize)) T1.* 
FROM DupCounts T1 
WHERE 
T1._RowNum_ <= $(MaxRowsPerGroup) 
AND EXISTS 
(SELECT * 
FROM $(TableName) T2 
WHERE $(JoinCondition) 
GROUP BY $(UniqueColumnList) 
HAVING COUNT(*) >1) 
ORDER BY $(UniqueColumnList), T1._RowNum_; 

Section 4: Delete the Duplicates 

-- Delete duplicates if you need to: 
-- I leave this commented to avoid disasters 
WITH DupCounts AS 
( SELECT _RowNum_ = row_number() 
OVER ( 
PARTITION BY $(UniqueColumnList) 
ORDER BY $(UniqueColumnList) ) 
FROM $(TableName) 
) 
DELETE FROM DupCounts WHERE DupCounts._RowNum_ > 1; 
SELECT RowsDeleted = @@rowcount; 

Note that the delete statement as presented does not control which of the 
duplicate records in a group are deleted. It will delete all but the first record in 
each group (WHERE DupCounts._RowNum_ > 1). However, the row_number 
function is really returning a random ordering, because the ORDER BY 
columns are the same as the PARTITION BY columns. You would need to use 
another column in the ORDER BY clause if you needed to specify which 



The Best of SQLServerCentral.com – Vol.7 

75 
 

records from the duplicate list to keep. For example, to ensure all but the lowest 
ContactID in each group is deleted, use this: 

WITH DupCounts AS 
( SELECT _RowNum_ = row_number() 
OVER ( 
PARTITION BY $(UniqueColumnList) 
ORDER BY ContactID ) 
FROM $(TableName) 
) 
DELETE FROM DupCounts WHERE DupCounts._RowNum_ > 1; 

Automating Excel from SQL Server 
By Wayne Sheffield 

You get a new email & from your boss. It says: Hey Wayne. I get the data that's 
in the attached Excel spreadsheet from these 5 reports (which he then lists). 
Can you automate this so that this spreadsheet will be updated weekly with 
those values? Note that it needs to add new information to the end of the 
spreadsheet, not just replace the data. Oh yeah & can you have everything 
formatted like it currently is? When you look at the spreadsheet, there are many 
rows of data (one per week), and many columns. Some columns are text, some 
numbers, and some are calculations. Some of the text is left-justified, some 
center, some right-justified. Some numbers have no decimals, some have one or 
two. And some are percentages. 

So, you get to work. You get a procedure together that gathers the information. 
But when you use the OpenRowset method to insert the data into the 
spreadsheet, there is no formatting. So you decide to investigate whether you 
can get T-SQL to perform Excel Automation to do all the work for you. (Note 
this is not to say that there aren't other, better ways to do this. It's just what you 
decided to do.) 

So, what is Excel Automation? Simply put, it's having one application (in our 
case, SQL Server) essentially "drive" Excel, using built-in Excel properties and 
methods. In SQL Server, this is accomplished by use of the sp_OA stored 
procedures. 

Obviously, if SQL Server is going to drive Excel, then Excel needs to be 
installed on the server that it's running from. 



The Best of SQLServerCentral.com – Vol.7 

76 
 

The first thing that SQL needs to do is to open up an instance of Excel. The 
code to do that is: 

declare @xlApp integer, @rs integer 
execute @rs = dbo.sp_OACreate 'Excel.Application', @xlApp 
OUTPUT   

So what we done is to start up the excel application. The variable @xlApp is a 
handle to the application. I have found it useful to set the Excel Properties 
"ScreenUpdating" and "DisplayAlerts" to false. ScreenUpdating turned off will 
speed up the code, and you won't be looking at it anyway. DisplayAlerts turned 
off will prevent prompts requiring a response from appearing; Excel will use 
the default response. These are set by: 

execute @rs = master.dbo.sp_OASetProperty @xlApp, 
'ScreenUpdating', 'False'  
execute @rs = master.dbo.sp_OASetProperty @xlApp, 
'DisplayAlerts', 'False'   

Now we need to get a handle to the open workbooks. The code to do that is: 

declare @xlWorkbooks integer  
execute @rs = master.dbo.sp_OAMethod @xlApp, 'Workbooks', 
@xlWorkbooks OUTPUT   

Now we have a decision to make. Are we going to open an existing 
spreadsheet, or make a new one? 

To open an existing one: 

declare @xlWorkbook integer  
execute @rs = master.dbo.sp_OAMethod @xlWorkbooks, 'Open', 
@xlWorkBook OUTPUT, 'C:\Myspreadsheet.xls'   

To add a new workbook: 

declare @xlWorkBook integer  
execute @rs = master.dbo.sp_OAMethod @xlWorkBooks, 'Add', 
@xlWorkBook OUTPUT, -4167   

(The 4167 is the value of the constant xlWBATWorksheet, which specifies to 
add a new worksheet). 



The Best of SQLServerCentral.com – Vol.7 

77 
 

Now that we have a handle to the workbook, we have to get a handle to the 
worksheet: 

declare @xlWorkSheet integer  
execute @rs = master.dbo.sp_OAMethod @xlWorkBook, 
'ActiveSheet', @xlWorkSheet OUTPUT   

Now we have to find out the last row. Thankfully, Excel can tell us that: 

declare @xlLastRow integer 
execute @rs = master.dbo.sp_OAGetProperty @xlWorkSheet, 
'Cells.SpecialCells(11).Row', @xlLastRow OUTPUT   

If you want to, you can also get the last column: 

declare @xlLastColumn integer  
execute @rs = master.dbo.sp_OAGetProperty @xlWorkSheet, 
'Cells.SpecialCells(11).Column', @xlLastColumn OUTPUT   

After all of this setup work, we're finally ready to start putting the data into the 
spreadsheet. First, you need to get a handle to the cell: 

declare @xlCell integer 
set @LastRow = @LastRow + 1 
execute master.dbo.sp_OAGetProperty @xlWorkSheet, 'Cells', 
@xlCell OUTPUT, @LastRow, 1   

Now we put the data into that cell: 

execute @rs = master.dbo.sp_OASetProperty @xlCell, 'Value', 
@Value   

If you want to format that cell: 

Execute @rs = master.dbo.sp_OASetProperty @xlCell, 
'NumberFormat', '0%'   

• 0% sets it to be a percentage with no decimals.  

• 0.0% sets it to be a percentage with one decimal.  

• 'd-mmm' set it to be a character date in the format "10 Oct"  

• 'mm-dd-yyyy' sets it to be a character date in this good old format.  



The Best of SQLServerCentral.com – Vol.7 

78 
 

• 'mm-dd-yyyy hh:mm:ss' sets it to be a character date in the date/time 
format.  

• '$#,##0.00' sets it to be a number with the currency symbol, 2 decimal 
points, and at least one whole number. Numbers would be separated by 
comma at every third number.  

Setting font settings are a little harder: 

Declare @objProp varchar(200) 
Set @objProp = 'Font.Bold' 
Execute @rs = master.dbo.sp_OASetProperty @xlCell, @objProp, 
'True'   

(You can underline it by using Font.Underline) 

One big note: everything that you have a pointer to needs to be destroyed at 
some point in time. So, before you move on to a new cell, you need to: 

execute @rs = master.dbo.sp_OADestroy @xlCell   

Now you need to save and close the file and close Excel: 

Declare @FileName varchar(100) 
Set @FileName = 'C:\MyNewExcelSpreadsheet.xls' 
execute @rs = master.dbo.sp_OAMethod @xlWorkBook 'SaveAs', 
null, @FileName, -4143   

(The 4143 is the file format constant to save the file as.) 

execute @rs = master.dbo.sp_OAMethod @xlWorkBook, 'Close' 
execute @rs = master.dbo.sp_OAMethod @xlApp, 'Quit'   

Several other things you can do: 

To change the name of the workbook: 

execute @rs = master.dbo.sp_OASetProperty @xlWorkBook, 'Title', 
'My workbook name'   

To change the name of the sheet: 



The Best of SQLServerCentral.com – Vol.7 

79 
 

execute @rs = master.dbo.sp_OASetProperty @xlWorkSheet, 'Name', 
'My sheet name'   

To get the format of an existing cell: 

execute @rs = master.dbo.sp_OAGetProperty @xlCell, 
'NumberFormat', @Value OUTPUT   

To get the value of an existing cell: 

execute @rs = master.dbo.sp_OAGetProperty @xlCell, 'Value', 
@Value OUTPUT   

If you want to automatically size all of the columns to be the width of the 
widest data: 

execute @rs = master.dbo.sp_OAMethod @xlWorkSheet, 
'Columns.AutoFit' 

Finally, I did say earlier that all pointers need to be destroyed: 

execute @rs = master.dbo.sp_OADestroy @xlWorkSheet 
execute @rs = master.dbo.sp_OADestroy @xlWorkBook 
execute @rs = master.dbo.sp_OADestroy @xlWorkBooks 
execute @rs = master.dbo.sp_OADestroy @xlApp   

If you want to use a formula, set the value of the cell to the formula, ie: 
'=sum(a4.a50)' or '=(+a4+a5)/a6'. Note that the equal sign must be the first 
character to signify a formula. 

Notice that in all of the sp_OA procedure calls, I put the result of the call into 
the variable @rs. This can be evaluated to return many errors: 

If @rs <> 0 execute master.dbo.sp_OAGetErrorInfo @Object, 
@OA_Source OUTPUT, @OA_Descr OUTPUT, @HelpFile OUTPUT, @HelpID 
OUTPUT   

Note that you're not limited to working with spreadsheets you can work with 
charts also. 

One last note: Excel's help file gives us most of this information. Just look 
under "Programming Information", and then under "Microsoft Excel Visual 



The Best of SQLServerCentral.com – Vol.7 

80 
 

Basic Reference" for all of the objects, methods and properties that can be used. 
Occasionally I would have to look up the constant values on the Internet just do 
a search on the constant name.  

Moving Indexes 
By Thom Bolin 

I have a client that was in need of moving all there indexes from the primary 
file group to an index file group. There were a total of 25 databases so the time 
needed to script each one individually would have been overwhelming not to 
mention the need to perform this across multiple environments. 

I scoured the web and found some examples but many either didn't work the 
way I needed or were complex in their logic and difficult to understand. I took 
the best ideas of each of those and created the two attached scripts. After 
execution the results can be copied to a new query window and executed. 

Unique constraints associated with indexes required using the alter table 
command where as the normal indexes only used the drop/create index 
command. Clustered indexes and foreign keys were excluded for ease of 
execution, and because I didn t want to move the data. 

Lets breakdown the process and show how it all fits together. These scripts 
were written for SQL 2000 so system tables rather than management views 
were used. The scripts will execute on SQL2005 as written but could be 
modified to use the management views provided. 

First we need to collect all the meta-data needed to drop and recreate the 
indexes, this is the same for both non-unique and unique indexes: 

select dbo.sysobjects.id,               -- id of table          
       dbo.sysobjects.name,             -- name of table          
       dbo.sysindexes.indid,            -- id of index          
       dbo.sysindexes.name indname,     -- name of index              
       dbo.sysindexes.origfillfactor,   -- fillfactor for index          
       dbo.sysindexes.groupid           -- filegroup where 
index is currently stored   

The joins needed to gather the information is between sysindexes and 
sysobjects based on the object id: 



The Best of SQLServerCentral.com – Vol.7 

81 
 

from sysindexes inner join 
       dbo.sysobjects on dbo.sysindexes.id = dbo.sysobjects.id   

The following where clause removes clustered indexes from the selection. 
Clustered indexes need to be excluded based on the fact that moving a clustered 
index also moves the associated data. This would in effect nullify the moving 
of the other indexes since the data and index would once again be located in the 
same filegroup. All user indexes will be associated with objects of xtype 'U', 
user table. Only including index ids between 2 and 254 exclude entries 
associated with text and image data. indexproperty is a system function that 
display properties of an index. IsClustered is used to exclude the clstered 
indexes. The default filegroup, Primary, is 1. This can be changed if indexes 
are already stored in a different filegroup 

where (dbo.sysobjects.xtype = 'U') and (sysindexes.indid 
BETWEEN 2 and 254 
and (indexproperty(sysindexes.id,sysindexes.name,'IsClustered') 
= 0) 
and sysindexes.groupid = 1   

By using a subquery all the indexes that are being used as a constraint are 
excluded. sysconstraints contains a row for each constraint in the current 
database. Where constid is the object id of the constraint and the name is the 
index name. A colid of 0 indicates it is a table level constraint as opposed to 
column level. sysconstraints.id is equal to the sysobject id for the table. 

and not exists (select 1 from sysconstraints 
                      join dbo.sysobjects so2 
                        on so2.id = sysconstraints.constid 
                       and so2.name = sysindexes.name 
                      where colid = 0 and sysconstraints.id = 
dbo.sysobjects.id)   

The order by clause sorts the output by table name and index id. 

This data is stored in a cursor that is then processed and the appropriate create 
and drop statements are generated. Once the cursor is opened and a record 
fetched the columns that make up the index are needed in the correct order. A 
select statement with much of the same logic as above is used. Lets take a look 
at how this is done. 

SELECT @list=@list +'['+dbo.syscolumns.name+']' + 
       (case 
indexkey_property(@id,@indid,sysindexkeys.colid,'IsDescending') 



The Best of SQLServerCentral.com – Vol.7 

82 
 

           when 1 then ' DESC ,' 
           else ' ASC , ' 
       end )   

The select appends to variable @list all the columns that make up the index as 
well as the sort order of the column. Indexkey_property is used to find this 
value and then either DESC or ASC is added to the column definition. 

FROM dbo.sysindexes 
      INNER JOIN dbo.sysobjects on dbo.sysindexes.id = 
dbo.sysobjects.id 
      INNER JOIN dbo.sysindexkeys on dbo.sysindexes.id = 
dbo.sysindexkeys.id 
             and dbo.sysindexes.indid = dbo.sysindexkeys.indid 
      INNER JOIN dbo.syscolumns on dbo.sysindexes.id = 
dbo.syscolumns.id 
             AND dbo.sysindexkeys.colid = dbo.syscolumns.colid 
      WHERE (dbo.sysobjects.xtype = 'U') and 
(dbo.sysindexes.indid = @indid) 
        and (dbo.sysobjects.id = @id)   

The select if very similar to the one above with the some of the filters removed 
since we are working with only the subset of indexes we need to script. 

ORDER BY dbo.sysindexes.indid, dbo.sysindexkeys.keyno   

The Order BY clause is used to keep the columns in the original order. Once 
@list is populated it is time to script the drop and create statements. 

set @strsql = 'drop index ['+@tbname+'].['+@indname+']' 
  print @strsql   

The drop index statements only needs the table name and index name. the print 
statement sends the statement to the results pane of Query Analyzer. 

IF @fill = 0      
  SET @fill = 90   

@fill will be returned as zero for system created statistics and possibly for 
some indexes, but a value of 0 is invalid in the create statement. 

IF (indexproperty(@id,@indname,'IsUnique') = 0) 
  set @strsql = 'create unique index '     



The Best of SQLServerCentral.com – Vol.7 

83 
 

 else       
  set @strsql = 'create index '   

Use correct create index statement by including the unique keyword if original 
index was unique. 

set @strsql = @strsql + '['+@indname+'] on 
[dbo].['+@tbname+']('+@list+') with fillfactor = '+cast(@fill 
as nvarchar(3)) + ' on [' + @newgroup +']'     
print @strsql   

Prepend the create statement to the remaining command needed for the create. 
The tablename, indexname, list of columns, and fill factor are all needed along 
with the new filegroup name. @newgroup is set at the top of the script. 

Once the script has completed executing the output should look similar to what 
it below: 

drop index [Order Details].[OrdersOrder_Details] 
create index [OrdersOrder_Details] on [dbo].[Order 
Details]([OrderID] ASC ) with fillfactor = 90 on [INDEX] 

drop index [Order Details].[ProductID] 
create index [ProductID] on [dbo].[Order Details]([ProductID] 
ASC ) with fillfactor = 90 on [INDEX] 

drop index [Order Details].[ProductsOrder_Details]  create 
index [ProductsOrder_Details] on 
[dbo].[Order Details]([ProductID] ASC ) with fillfactor = 90 on 
[INDEX] 

drop index [Orders].[CustomerID] 
create index [CustomerID] on [dbo].[Orders]([CustomerID] ASC ) 
with fillfactor = 90 on [INDEX]   

In order to move the indexes associated with unique constraints the code was 
modified as detailed below. 

from sysindexes 
  inner join dbo.sysobjects 
     on dbo.sysindexes.id = dbo.sysobjects.id 
  inner join dbo.sysconstraints 
     on dbo.sysconstraints.id = dbo.sysobjects.id 
    and dbo.sysconstraints.colid = 0 
  inner join dbo.sysobjects so2 
     on so2.id = dbo.sysconstraints.constid 
    and so2.name = sysindexes.name 
   where (dbo.sysobjects.xtype = 'U') and (sysindexes.indid 



The Best of SQLServerCentral.com – Vol.7 

84 
 

BETWEEN 2 and 254) 
  and 
(indexproperty(sysindexes.id,sysindexes.name,'IsClustered') = 
0) 
  and (indexproperty(sysindexes.id,sysindexes.name,'IsUnique') 
= 1) 
  and sysindexes.groupid = 1   

Join the sysindexes table to the sysconstraints table where sysconstraints.colid 
= 0, signifying this is a table level constrainst, and the constraint is an index as 
represented by the join to sysobjects so2. This will include all unique index 
constraints on the table. 

  and not exists (select 1 from sysreferences fk 
   where fk.rkeyid = sysindexes.id 
   and fk.rkeyindid = sysindexes.indid)   

Exclude any constraints that are associated with foreign keys. These objects 
reside in the sysreferences table using the table id and index id. 

Cut and paste this output to a new query analyzer window and execute it to 
move the indexes. 

When generating the output for these type of indexes the drop constraint and 
add constraint clause of the alter table is required as shown below. 

set @strsql = 'alter table ['+@tbname+'] drop constraint 
['+@indname+']'   

Drop the constraint by using the tablename and indexname from the cursor 
fetch. 

set @strsql = 'alter table [dbo].['+@tbname+'] add constraint 
['+@indname+'] '    
set @strsql = @strsql + ' Unique NonClustered ('+@list+') '    
set @strsql = @strsql + 'with (fillfactor = '+cast(@fill as 
nvarchar(3)) + ') on [' +@newgroup +']'   

Issue the alter table with add constraint to create the new constraint. @list, 
@fill and @newgroup are populated the same here as in the normal index move 
logic. 

Using the system tables to create transact sql statements as shown above an 
entire databases worth of indexes can be moved very small amount of time. 



The Best of SQLServerCentral.com – Vol.7 

85 
 

SQLServer uses similar methods to return the alter statements that are 
generated out of Enterprise Manager when a script is saved after altering an 
object. 

The output scripts can be used in a variety of methods to provide a higher 
quality of life. A couple of examples are that the scripts can be generated 
during the day and then scheduled for execution during off hours, saved for 
reuse in different environments involving the same schema. 

Improvements could be made to the scripts to include the dropping and 
recreation of associated foreign keys, using management views for execution 
on SQLServer 2005 instance. 

I hope that by sharing the method used above it will open a door to scripting 
that may not have been used before. 

On Indexes and Views 
By Timothy Wiseman 

Used properly, indexed views can be a magnificent way of improving 
performance and providing greater ease for both users and developers while 
still maintaining a fully normalized and constrained database. However, to fully 
realize the benefits of the indexed view, the execution plan must actually make 
use of it. 

When a nonindexed view or a view whose index will not be used in the 
execution plan is referenced in a query, the optimizer considers the select 
statement the view represents the same way it would consider a subquery. In a 
way, this is very much like using the view as a macro. It saves the user or 
developer from having to type, or even be fully aware of, the exact contents of 
the view, but the optimizer looks at it as though the developer had typed it in. 

When dealing with a view with an index that will be used, the optimizer can go 
to materialized data the view represents instead. In most cases, this is can be 
much more efficient than expanding the view, especially when the view 
includes multiple joins or complex where statements within it. So, while some 
exceptions do exist, it is generally desirable to ensure that the index is used. 



The Best of SQLServerCentral.com – Vol.7 

86 
 

According to Books Online, the optimizer for SQL Server 2005 Enterprise 
Edition will intelligently decide when it is best to use or ignore indexes on 
views. Not only that, it has the ability to consider using the indexes on views if 
they would by applicable to the base tables as well. That only applies to 
Enterprise Edition, to quote directly from the Resolving Indexes on Views 
article on MSDN: 

To use an indexed view in all other editions, the NOEXPAND table hint 
must be used. 

In short, indexed views in every version but Enterprise will only be used to 
their full potential if the developers and users carefully ensure that they 
appropriately use the NOEXPAND hint. Also, applying the NOEXPAND hint 
to a view which does not have an index will generate an error. It can be 
illuminative to see an example. First, some test data is needed:  

Note: This code is at www.sqlservercentral.com 

Then, run the select statements and compare: 

SELECT   
* 
FROM 
 vwTestView 

SELECT   
* 
FROM 
 vwTestView WITH (NOEXPAND)   And here are the execution plans: 



The Best of SQLServerCentral.com – Vol.7 

87 
 

 

The second plan generated with the NOEXPAND query hint is vastly more 
efficient than the one without because of the way they are processed. This 
particular execution plan was generated by SQL Server 2005 Express, but the 
same results come from Standard Edition as well. 

One way to simplify this for developers and users is to use another view to hide 
the query hint. For instance: 

CREATE VIEW vwTestViewX 
AS 
SELECT 
 * 
FROM 
 dbo.vwTestView WITH (NOEXPAND)    

Then a query against this view will include the NOEXPAND against the other 
and generate an appropriate execution plan like: 



The Best of SQLServerCentral.com – Vol.7 

88 
 

 

One thing to note with embedding the NOEXPAND hint is that the query will 
return an error if NOEXPAND is specified and no indexes exist on the view. 
This should rarely be an issue, but it is worth noting. This is especially true 
since if a change is made to one of the base tables using SSMS Designer, the 
Designer will display a confirmation message that the table is referenced with 
Schemabinding but then readily destroy the index if the confirmation is given. 
This can lead to indexes being destroyed in development environments very 
easily. 

As long as the optimizer knows to use them, indexed views can provide 
enormous performance benefits. In the more powerful Enterprise Edition, the 
optimizer will handle this and there is rarely a reason to explicitly force their 
use. In other versions, though, the optimized must be explicitly told if they are 
needed. But, like other query hints, this explicit instruction can be made just 
once in a view on the indexed view if that is desirable. 

REFERENCES 

• Creating Indexed Views by MSDN (http://msdn.microsoft.com/en-
us/library/ms191432.aspx

• Resolving Indexes on Views by MSDN

 ) 

 (http://msdn.microsoft.com/en-
us/library/ms181151.aspx 

• View Resolution by MSDN

) 

 (

• The "Numbers" or "Tally" Table by Jeff Moden

http://msdn.microsoft.com/en-
us/library/ms190237.aspx) 

 
(

RELATED ARTICLES 

http://www.sqlservercentral.com/articles/TSQL/62867/) 

• What is Denormalization? By Chris Kempster 
(http://www.sqlservercentral.com/articles/Advanced/whatisdenormaliz
ation/1204/) 

http://msdn.microsoft.com/en-us/library/ms181151.aspx%2520�
http://msdn.microsoft.com/en-us/library/ms190237.aspx�
http://www.sqlservercentral.com/articles/Advanced/whatisdenormalization/1204/%2520�


The Best of SQLServerCentral.com – Vol.7 

89 
 

• The Myth of Over-Normalization by Tony Davis (http://www.simple-
talk.com/community/blogs/tony_davis/archive/2008/07/21/63094.aspx

Missing Indexes in SQL Server 2005 

) 

By Ranga Narasimhan 

There are several new features in SQL Server 2005. There are a few features to 
help find missing indexes, which are some of the very good ones. How great it 
will be if you know what indexes you need to create based on your workload? 
In SQL Server 2000, we had to use SQL Profiler trace files and Index tuning 
wizard. But with SQL Server 2005 DMVs, we can easily figure out what 
indexes we need to create which would benefit our application. 

The following are the missing index DMVs ( From SQL Server 2005 BOL) 

sys.dm_db_missing_index_group_stats 

Returns summary information about missing index 
groups, for example, the performance improvements 
that could be gained by implementing a specific group 
of missing indexes. 

sys.dm_db_missing_index_groups 
Returns information about a specific group of missing 
indexes, such as the group identifier and the identifiers 
of all missing indexes that are contained in that group. 

sys.dm_db_missing_index_details 

Returns detailed information about a missing index; for 
example, it returns the name and identifier of the table 
where the index is missing, and the columns and column 
types that should make up the missing index. 

sys.dm_db_missing_index_columns 
Returns information about the database table columns 
that are missing an index. 

Let’s see what indexes are there for table [Person.Address] table in 
AdventureWorks database by running this code: 

use AdventureWorks; 
exec sp_helpindex [Person.Address]  Fig:1 

http://www.simple-talk.com/community/blogs/tony_davis/archive/2008/07/21/63094.aspx�


The Best of SQLServerCentral.com – Vol.7 

90 
 

 

I don t see an index for ModifiedDate column for [Person.Address] table. So, 
to get a entry in the sys.dm_db_missing_index_details DMV, lets run a query 
like this: 

Query: 1 

select * from Person.Address where ModifiedDate = '01/01/2008'   

You may not see any results for the query above, but SQL Server internally 
recorded that a query was run and a index on ModifiedDate column would have 
been very useful. 

Query: 2 

select * from sys.dm_db_missing_index_details:   

Fig: 2 

 

In Fig: 2, see the equality_columns field, which implies that a index on the 
[Modified Date] column is missing ( or might be helpful) 

Query: 3: 

select db_name(d.database_id) dbname, object_name(d.object_id) 
tablename, d.index_handle, 
d.equality_columns, d.inequality_columns, d.included_columns, 
d.statement as fully_qualified_object, gs.* 
from  sys.dm_db_missing_index_groups g 
       join sys.dm_db_missing_index_group_stats gs on 
gs.group_handle = g.index_group_handle 
       join sys.dm_db_missing_index_details d on g.index_handle 
= d.index_handle 
where  d.database_id =  d.database_id and d.object_id =  
d.object_id 
  and object_name(d.object_id) = 'Address'   

Run Query 1 several times. Now, run Query: 3, 



The Best of SQLServerCentral.com – Vol.7 

91 
 

Fig: 3 

 

In Fig 3, notice the user_seeks column. So every time a query is run, for which 
an index might be useful, SQL Server keeps updating the missing index DMVs. 
This is very valuable information, based on this you can create indexes to 
support those queries. Isn t this cool! Yes, SQL Server 2005 rocks! 

The DMVs for missing indexes are great new features. I work with a Siebel 
CRM database where queries are built dynamically. So it is hard to design 
indexes in advance. The missing index feature helps to me create indexes for 
those queries that have high user_seeks for a particular column in a table. 

For more information see About the Missing Indexes Feature in SQL Server 
2005 Books Online. 

Using the Script Component with 
Multiple Outputs 
By Tim Mitchell 

One of the more common questions I find in SQL Server SSIS forums is how 
to split apart a single text file into multiple outputs. Files extracted from foreign 
sources often arrive in nonstandard formats, and are too often unchangeable at 
the source and must be dealt with during the import process. For 
unconventional custom transformations such as this, the script component is a 
highly flexible and almost infinitely configurable tool that is quite useful for 
getting things done. 

In this article, I will demonstrate a relatively simple way to address single files 
with multiple output types using the SQL Server Integration Services (SSIS) 
script component. 

The example we'll use demonstrates what I refer to as the "record type" format. 
A single file may contain many different record types, and each is identified by 
the first element in each record (line of text) in the file. You may find other 
formats, including those that are identified by their position in the file, a 
particular string of text, or number of elements; this example could be easily 



The Best of SQLServerCentral.com – Vol.7 

92 
 

modified to handle these types of nonstandard formats. In the healthcare 
industry where I spent most of my time, the record type layout is quite common 
in EDI (electronic data interchange) situations. As you can see in the example 
below, there are varying numbers of elements within this file source, which 
would pose significant problems if you simply use the off-the-shelf 
transformations provided within SSIS. 

1|202|Scott,Michael|District Manager|Scranton PA 
2|241|202|Halpert,Jim|Sales 
3|241|3348|Lackawanna County 
3|241|9582|Bob Vance Refrigeration 
2|189|202|Dwight Schrute|Sales 
3|189|1102|Smith Machinery 
3|189|2792|State of Pennsylvania 
3|189|4929|Office Systems of America 
1|339|Filipelli,Karen|Management|Utica NY 
2|493|339|Smith,Marshall|Sales 
3|493|2555|Ace Printing Center 

In the snippet for this demonstration, record type 1 contains manager details, 
record type 2 lists the employee information, and record type 3 shows the list of 
clients. Since the number of columns and their respective data types differ from 
one record to the next, we can't simply use a conditional split to create multiple 
paths for data flow; this is a case for the script component. 

To get started, we will create a single Data Flow task in our SSIS package. Go 
to the Data Flow tab and drag over a Script Component from the Toolbox. You 
will be prompted for the usage type of the script component; click the radio 
button beside Source and click OK (Figure 1). Using this component as a 
source creates only the Output without configuring any Inputs, which is 
appropriate in our case since we will be creating our own data rows. 



The Best of SQLServerCentral.com – Vol.7 

93 
 

 
Figure 1 

Double click your new instance of the script component in your Data Flow 
pane to open the editor for that component. Under the Inputs and Outputs pane, 
you can see that there is a single output created by default (Figure 2). 



The Best of SQLServerCentral.com – Vol.7 

94 
 

 
Figure 2 

For our example, we actually need three outputs, one each for Managers, 
Employees, and Clients. To create the additional outputs, click on the Add 
Output button twice to create two more outputs. For each output, highlight the 
Output Columns folder and add the appropriate number of data columns by 
clicking the Add Column button. Configure the data types for each column in 
the Data Type Properties (Figure 3). You can see that I have changed the names 
of the outputs, as well as the columns within each, so that they have meaningful 
names - this will come in handy when we start scripting in a moment. 



The Best of SQLServerCentral.com – Vol.7 

95 
 

 
Figure 3 

Now, I'll open up the script editor by clicking the Edit Script button near the 
bottom of the window in the Script tab. For this example, we are leveraging the 
addition of the C# language to the SSIS scripting tools; this is new to SQL 
Server 2008, as the previous version required you to use VB.NET for most 
scripting situations. 

In this script, the first thing we'll do is set up a connection to the source file by 
creating a a System.IO.StreamReader object. The file name we use is defined in 
our SSIS package as the variable named Filename, which has already been 
populated with the path to the source file. Using the while loop, we read each 
line of the file into a variable and process each line in turn. Our test data is 
pipe-delimited, so I use the C# string function Split() to break apart each line 
into atomic elements, and I'll evaluate the first element on each line (referred to 
as items[0], as a zero-based index) to send each row of data to the correct 
output. 

public override void CreateNewOutputRows() 
{ 



The Best of SQLServerCentral.com – Vol.7 

96 
 

// Create the StreamReader object to read the input file 
System.IO.StreamReader reader = new 
System.IO.StreamReader(this.Variables.Filename); 
// Loop through the file to read each line 
while(!reader.EndOfStream) 
{ 
// Read one line 
string line = reader.ReadLine(); 
// Break the file apart into atomic elements 
string[] items = line.Split('|');  
// Record type 1 is Manager 
if (items[0] == "1") 
{ 
ManagerOutputBuffer.AddRow(); 
ManagerOutputBuffer.ManagerID = int.Parse(items[1]); 
ManagerOutputBuffer.ManagerName = items[2]; 
ManagerOutputBuffer.ManagerRole = items[3]; 
ManagerOutputBuffer.Location = items[4]; 
}  
// Record type 2 is Employee 
elseif (items[0] == "2") 
{ 
EmployeeOutputBuffer.AddRow(); 
EmployeeOutputBuffer.EmployeeID = int.Parse(items[1]); 
EmployeeOutputBuffer.ManagerID = int.Parse(items[2]); 
EmployeeOutputBuffer.EmployeeName = items[3]; 
EmployeeOutputBuffer.EmployeeRole = items[4]; 
}  
// Record type 3 is Client 
elseif (items[0] == "3") 
{ 
ClientOutputBuffer.AddRow(); 
ClientOutputBuffer.SalespersonID = int.Parse(items[1]); 
ClientOutputBuffer.ClientID = int.Parse(items[2]); 
ClientOutputBuffer.ClientName = items[3]; 

You'll see that our program will follow one of three paths depending on the first 
element of the row, with each path leading to one of the buffers to be wired up 
to one of our intended destinations. The buffer objects, which follow the Buffer 
naming convention, are objects that are automagically created for each output 
we've defined in the editor in the previous step. In each of the paths, we must 
create a new output row to send to the data stream by calling the 
Buffer.AddRow() method. Note that you must call the AddRow() method 
before attempting to assign values to any of the output variables for that row. 
After adding the new output row for the appropriate path, we assign the 
corresponding value from the data file to each of the output variables. 

When the script is complete, we'll exit out of the script editor, and click OK on 
the Script Transformation Editor to save changes to this component.nt. 



The Best of SQLServerCentral.com – Vol.7 

97 
 

Next, we'll add a data destination for each output you defined in your script 
component. In our case, we will use a Flat File Destination to send each of the 
three data streams to a delimited file. After creating the output destinations, we 
connect the output (green arrow) from the script to each of the 3 outputs. You'll 
notice that, when you are dealing with components with multiple outputs, you'll 
be prompted to select the output you wish to use, as shown in Figure 4. Be sure 
to match the output from the script component to the corresponding destination. 

 
Figure 4 

After all three of our destinations are configured and properly connected to the 
Script Component, our package is ready to execute (see Figure 5). The output 
paths are labeled by default with the name of the output we created in the script 
component; you can see now why it's essential to create meaningful names 
rather than using the default names Output0, Output1, etc. 



The Best of SQLServerCentral.com – Vol.7 

98 
 

 
Figure 5 

After we execute the package, you can see in the Data Flow pane that we have 
rows flowing to all 3 of our outputs, consistent with the data in our sample file. 



The Best of SQLServerCentral.com – Vol.7 

99 
 

> 
Figure 6 

A final review of the 3 output files confirms that the rows were directed to the 
correct destinations. 

In this brief demonstration, we have reviewed how the script component in 
SSIS can be used to extract data from source files that have varying metadata. 
The record type format is just one example of such files, but you can see the 
methodology I've used here and hopefully can adapt it for your own needs. 

SSIS and Stored procedures using temp 
tables 
By Michael Cape 

In SSIS, have you ever tried to use a store procedure which uses a temp table to 
generate its output. When you try to use a procedure like this in SSIS's OLE 
DB Source data flow source, there won't be any columns listed. Consider this 
simple stored procedure which outputs some data from AdventureWorks' 
Contact table. The procedure simply dumps some columns into a temporary 
table, and then selects rows from the temp table. 



The Best of SQLServerCentral.com – Vol.7 

100 
 

CREATE PROC dbo.TestSSISTempTable AS 
SET NOCOUNT ON 
SELECT ContactID, FirstName, MiddleName,  
LastName, Suffix, EmailAddress 

INTO #Contact 
FROM Person.Contact 

SELECT ContactID, FirstName, MiddleName,  
LastName, Suffix, EmailAddress 
FROM #Contact   

When I try us this proc in an SSIS data flow I don't get any columns listed, 
which means I can't complete the mapping of source columns to destination 
columns. 

 



The Best of SQLServerCentral.com – Vol.7 

101 
 

 

There are three techniques which can be implemented to work around this 
issue. One is good (sorta), one is bad, and one is downright wacky. 

The Bad 

The easiest way to fix this is to add a simple SET statement at the beginning of 
the stored procedure. Adding the statement SET FMTONLY OFF at the start of 
the original procedure will allow the column information to come through in 
the column listing of the OLE DB Source control. 



The Best of SQLServerCentral.com – Vol.7 

102 
 

 

So, what's so bad about this technique? In a word, bad performance. This was 
the first technique I tried, when I was working with an SSIS package that was 
part of a daily job run. The problem I encountered was that my stored 
procedure didn't perform very well, sometimes running for hours. However, 
every time I ran the procedure with Query Analyzer it would never take more 
than 5 minutes. And most times, it ran in less than 1 minute. 

As I was researching this, I found the explanation for this in the article “Coping 
with No Column Names in the SSIS OLEDB Data Source Editor” 
(http://www.sqlservercentral.com/articles/Integration+Services+(SSIS)/ 
61824/

  

) By Paul Ibison. According to this article this technique will cause the 
procedure to execute 5 times! Yikes! After, reading this, I too verified this. 
Indeed, my stored procedure ran 5 times. Well, as you can image this definitely 
has a negative impact on performance. Furthermore, a more potentially 
dangerous issue is if the stored procedure did any updating or inserting into a 
table. Those would be done 5 times! 



The Best of SQLServerCentral.com – Vol.7 

103 
 

The Good (Sorta) 

The next technique that I tried was to convert the temp table to a table variable. 
This too worked, although it was a little harder to implement than the first 
technique. However, it avoided the issue with running the procedure 5 times. 
However, performance can be an issue with this technique as well. Sometimes, 
table variable perform as well or better than temp tables. However, sometimes 
temp tables are better performers. SQL Server doesn't maintain any statistics 
for table variables. This means that every time they are used in a query they are 
always table-scanned. 

Another problem with this is that apparently all temp tables have to be 
converted into table variables. Suppose your stored procedure has 3 temp 
tables, and only one of them provides the output. Simply converting that one 
temp table to a table variable doesn't seem to work. When I tried implementing 
this technique, I couldn't get it to work unless I converted all temp tables to 
table variables. 

The Wacky 

This last technique is definitely weird. Again, as I was researching this issue, I 
found Jamie Thomson's blog entry called SSIS: ‘Using stored procedures inside 
an OLE DB Source component’ (http://consultingblogs.emc.com/ 
jamiethomson/archive/2006/12/20/SSIS_3A00_-Using-stored-procedures-
inside-an-OLE-DB-Source-component.aspx

Here, Jamie states that a stored procedure doesn't have any metadata for the 
OLE DB provider to retrieve. He further states that the OLE DB provider has to 
make a "best guess" by taking the metadata of the first select statement in the 
stored procedure. However, if the stored procedure doesn't have a good query 
for the OLE DB provider to use then it can't guess. Furthermore, Jamie goes on 
to reference Adam Machanic's blog entry, ‘Stored procedures are not 
parameterized views’ 
(

). 

http://sqlblog.com/blogs/adam_machanic/archive/2006/07/12/109.aspx

Here Adam states that stored procedures don't provide an output contract. 
However, I started to wonder if I couldn't trick the OLE DB provider into 
inferring an output contract for a stored procedure. The idea is pretty simple. I 
put a "no-op" select statement at the top of my procedure which structurally 
mimicked the output of the stored procedure. Therefore, revisiting the previous 
stored procedure, I added the IF 1 = 2 code block in the following example. 

). 



The Best of SQLServerCentral.com – Vol.7 

104 
 

CREATE PROC dbo.TestSSISTempTable AS 
SET NOCOUNT ON 
IF 1 = 2 
BEGIN 
SELECT CAST(NULL AS INT) AS ContactID,CAST(NULL AS 
NVARCHAR(50)) AS FirstName,  
CAST(NULL AS NVARCHAR(50)) AS MiddleName, CAST(NULL AS 
NVARCHAR(50)) AS LastName,  
CAST(NULL AS NVARCHAR(10)) AS Suffix, CAST(NULL AS 
NVARCHAR(50)) AS EmailAddress 
END 

SELECT ContactID, FirstName, MiddleName,  
LastName, Suffix, EmailAddress 

INTO #Contact 
FROM Person.Contact 

SELECT ContactID, FirstName, MiddleName,  
LastName, Suffix, EmailAddress 
FROM #Contact   

Sure enough, this worked! There are a few issues you have to keep in mind 
when using this technique. You have to make sure that every column in the 
output query is accounted for in the "contract" query. You also have to make 
sure that the columns have the right data type as the output columns. Any 
columns which are in the output query and not in the "contract" query won't be 
available in SSIS. Furthermore, any column in the "contract" query but not in 
the output query WILL be available in SSIS, but the SSIS package will fail 
when you run the package, and you have mapped a column which doesn't really 
exist in the output. 

All in all, I like this technique because it doesn't impose the unnecessary 
overhead of repetitive executions that the SET FMTONLY OFF technique did. 
I also didn't have to convert all my temp tables to table variables, thereby 
exposing the procedure to a potential performance bottleneck. Creating the 
"contract" query required a little more work than simply adding a SET 
statement, and required a little less work than converting temp tables to table 
variables. The result was a stored procedure which still performed well and 
didn't require any reworking of the core components. 

  



The Best of SQLServerCentral.com – Vol.7 

105 
 

SSIS Custom Error Handling 
By Zach Mattson 

If you have ever worked on a data integration project "in the old days" of pre-
SSIS, you know how much custom work has to be done to deal with data that 
comes from systems with bad source data and a severe lack of constraints. With 
SSIS, you can easily direct rows that cause errors to a different destination for 
saving. 

After working on some basic packages, it was becoming cumbersome to set up 
custom data destinations for each transformation where I wanted to redirect bad 
data. Having all these different tables or files would make it difficult to 
aggregate into a report that was meaningful or make it easy to search for 
patterns. With a central logging table for these various pieces of bad data, 
anyone could setup reports that are automatically emailed to the source data 
owners as a kind of "rub it in your face" report of their data quality. My initial 
intention was for my own use, but immediately it became clear this could be 
used to arm project managers with enough information to call meetings with 
other project managers and let everyone else work. There would be little need 
for them to call you into the meeting if they had all the information (in theory it 
sounded good). Whatever your interests might be, this article offers a quick 
step by step way to aggregate a variety of data source's information into a 
single source to be queried as needed. 

I started by doing what we all do when faced with a new problem, search to see 
who has come across this same problem, and solved it already. My search 
ended up here on www.SQLServerCentral.com reading Jack Corbett's article 
‘Error Handling in SSIS’ 
(http://www.sqlservercentral.com/articles/Integration+Services+(SSIS)/62662/

1.  To get started, we need a table to house the error rows in. This is the 
schema I use, it lets the component auto map the columns from the 
component to the table - saving a little time on each use. 

)
. I downloaded his component (link in the article discussion) and began 
converting it for use in Business Intelligence Development Studio(BIDS) 2008. 
Once it was working, I noticed that I wanted to add a few things to the logged 
output like package name and the user who invoked it. 

CREATE TABLE [dbo].[SSIS_ERROR_LOG]( 
 [ErrorLogId] [int] IDENTITY(1,1) NOT NULL, 



The Best of SQLServerCentral.com – Vol.7 

106 
 

 [ErrorCode] [int] NULL, 
 [ErrorColumn] [nvarchar](128) NULL, 
 [ErrorDetails] [xml] NULL, 
 [ErrorDesc] [nvarchar](256) NULL, 
 [ErrorStep] [nvarchar](256) NULL, 
 [ErrorTask] [nvarchar](256) NULL, 
 [PackageTime] [smalldatetime] NULL, 
 [PackageName] [nvarchar](256) NULL, 
 [UserName] [nvarchar](128) NULL, 
 CONSTRAINT [PK_SSIS_ERROR_LOG] PRIMARY KEY NONCLUSTERED  
( 
 [ErrorLogId] ASC 
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, 
IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = 
ON) ON [PRIMARY] 
) ON [PRIMARY] 

2. Using the SSIS.Logging.dll (download at the end of the article), you 
will need to use gacutil.exe to register the custom component before 
adding to the BIDS toolbox. I setup a batch script in my bin folder to 
help with quick deployment as I modify the component. 

copy "C:\myfolder\SSIS.Logging\bin\SSIS.Logging.dll" 
"C:\Program Files\Microsoft SQL 
Server\100\DTS\PipelineComponents\" 
"C:\ETL\gacutil.exe" 
   /if "C:\Program Files\Microsoft SQL 
Server\100\DTS\PipelineComponents\SSIS.Logging.dll" 

3. Now that you have the component registered, you can add it to your 
toolbox. Right-click in the Data Flow Transformations pane and click 
"Choose Items". 



The Best of SQLServerCentral.com – Vol.7 

107 
 

 

Once added, you can now utilize the component for error handling. I setup a 
simple csv of a few baseball players from Milwaukee (note JJ Hardy is missing 
a number),  

21,Alcides Escobar,12/16/86 
28,Prince Fielder,05/09/84 
24,Mat Gamel,07/26/85 
,J.J. Hardy,08/19/82 
9,Hernan Iribarren,06/29/84 
8,Ryan Braun,11/17/83 
25,Mike Cameron,01/08/73 
22,Tony Gwynn,10/04/82 
1,Corey Hart,03/24/82   

4. I want to load this into a table on my database server. I setup a Data 
Flow task and connections to the file and database. I map the tranform 
and then add the Error Output from the database destination component 
to redirect the row to the Error Details component. Here is what the 
package looks like after I ran it. 



The Best of SQLServerCentral.com – Vol.7 

108 
 

 
5. I won't cover the basic transformation, but what we want to do is 

redirect the rows in error to the "Error Details" component. 

 

6. Next, open the Error Details component and go to the Input Columns 
tab. Add the columns that you want to track to the input buffer of the 
component. 



The Best of SQLServerCentral.com – Vol.7 

109 
 

 

7. After setting up your database connection, map the columns from the 
Error Details component to the OLEDB destination. 

 



The Best of SQLServerCentral.com – Vol.7 

110 
 

That is it, you can execute your test package and query the bad data. Here is a 
query that I have come up with to find what baseball player has no number. 
(Column 0 has no value in this case) 

SELECT * FROM ETL.dbo.SSIS_ERROR_LOG 
WHERE ErrorDetails.exist ('/fields/field[@name = "Column 0" and 
@value = ""]') = 1   

That is it! If you have any enhancements or thoughts on improving the 
component, post to the article discussion so everyone can benefit. Thanks to 
Jack for doing all the initial hard work in his article! 

Simple Steps to Creating SSIS Package 
Configuration File 
By Lanre Famuyide 

After putting so much effort into creating an Integration Services (SSIS) 
package to provide a structured solution to a set of daily routine tasks or a 
daunting business problem, the next thing that comes to mind is how to ensure 
that the solution you have implemented in the development environment is 
successfully deployed into the production environment. In this article we will 
be considering one of the steps to ensure successful deployment of SSIS 
packages: the use of a package configuration file. 

Creating a package configuration file for SSIS solutions makes package 
deployment in the production environment less error prone, portable, and very 
easy to modify input parameters. In order to demonstrate this concept, I have 
created an SSIS package using Microsoft's Business Intelligence Development 
Studio to export contacts list from the contacts table in the Person schema of 
the Adventure Works database in SQL Server 2005. The contacts list is 
exported into a text file. 

To make the package robust, I created package level variables as input 
parameters for the data source, export data dump directory, and the exported 
data file which are included in the configuration file. I have assumed prior 
knowledge of creating variables in SSIS packages and that they are used to 
supply values at runtime. The next section outlines one approach to create a 
configuration file for our export package. 



The Best of SQLServerCentral.com – Vol.7 

111 
 

Procedure: 

Open the completed SSIS package and click on the Control flow tab if not 
already selected. 

 

Right-click on a blank area in the control flow work area, then click on Package 
configurations. 

 

Click on the Add button to start creating a configuration file. 



The Best of SQLServerCentral.com – Vol.7 

112 
 

 

Select a configuration type, and then specify configuration settings and a file 
name. In this example, we will use the XML configuration file type in order to 
make the configuration file settings format independent and editable using any 
text editor outside the BIDS development environment. Click the Next button 
to continue. 



The Best of SQLServerCentral.com – Vol.7 

113 
 

 

Check the configurable properties of objects in the package that are to be 
included in the configuration file. For simplicity, we will select the value 
property of the data source; the dump directory and the export file name 
variables. Click the Next button to continue. 



The Best of SQLServerCentral.com – Vol.7 

114 
 

 

Give the configuration settings a name, and review the settings. Click the 
Finish button to complete the configuration process. 



The Best of SQLServerCentral.com – Vol.7 

115 
 

 

Click on the Close button to close the configuration wizard. 

 



The Best of SQLServerCentral.com – Vol.7 

116 
 

Now that the configuration file for the package has been created, navigate to 
the location where the file is stored and make a copy. Open the original 
configuration file with any text or XML file editor and change the values of 
variables to values suitable for the target deployment environment. This is the 
configuration file that will be used to deploy the SSIS package. Below is a copy 
of the generated XML of the configuration file. 

 

It is important to ensure that you create the configuration file after the SSIS 
package development is completed. Any changes to the application package 
that changes the value of any of the package variables will require editing the 
configuration file to reflect the update; else the package may not run 
successfully and may raise an error similar to this "Error: 0xC0017004. The 
expression was evaluated, but cannot be set on the property". 

Conclusion 

The importance of configuration files to SSIS packages cannot be over 
emphasized. Package configuration files make deployment of SSIS packages 
easier, more manageable, and less error prone compared to the process of 
deploying DTS packages where you might have to create one package for the 
development environment and one for the production environment. 

As mentioned earlier in the article, we only created a basic configuration file. 
There are other settings that can be included in configuration files to fulfill your 



The Best of SQLServerCentral.com – Vol.7 

117 
 

package needs. So feel free to create and explore more on configuration file 
settings.  

Using Checkpoints in SSIS (Part 1) 
By Aaron Akin 

This is the first part of a series on using checkpoints in SSIS. In this article, I'll 
look at the basics of checkpoints, including enabling and configuring them in 
their simplest form. Future articles will cover more advanced usages of 
checkpoints. 

Note: this article applies to SQL Server 2005. 

What are checkpoints? 

SQL Server Integrated Services (SSIS) offers the ability to restart failed 
packages from the point of failure without having to rerun the entire package. 
When checkpoints are configured, the values of package variables as well as a 
list of tasks that have completed successfully are written to the checkpoint file 
as XML. When the package is restarted, this file is used to restore the state of 
the package to what it was when the package failed. 

Enabling checkpoints 

There are 3 package-level properties that need to be set in order to enable 
checkpoints. 

• CheckpointFileName Specify the full path to the checkpoint XML file. 
This file will be automatically created when checkpoints are enabled.  

• CheckpointUsage Indicates whether checkpoints are used. IfExists 
indicates that the checkpoint file should be used if it exists and is the 
most common setting used. Always indicates that the checkpoint file 
must always exist or the package will fail.  

• SaveCheckpoints Indicates whether the package saves checkpoints. 
This value must be set to True in order for packages to restart from 
the point of failure.  



The Best of SQLServerCentral.com – Vol.7 

118 
 

 

Setting these 3 package-level properties will enable checkpoint functionality in 
a package, but by default, no tasks are setup to log checkpoints. For each task 
and container in the package that you want to identify as a restart point, you 
must set the FailPackageOnFailure property True. By default, this property is 
set to False, so you ll need to remember to change it after adding new tasks to 
the package. 

 

Verifying checkpoints 

I added two Script Task objects to my package and set the 
FailPackageOnFailure property on each task to True. In order to verify that the 
checkpoints are setup properly and working as expected, I have set the 
ForceExecutionResult property on Task 2 to Failure. 



The Best of SQLServerCentral.com – Vol.7 

119 
 

 

This is a fast and easy way to force a task to fail so that you can verify 
checkpoints. Don t forget to change this property back to its default value of 
None once you have verified checkpoints are working as expected, unless, for 
some reason, you have a need for a task to fail once it goes to production. 

When the package is executed, Task 1 will succeed and a checkpoint will be 
written with its task identifier, whereas Task 2 will fail and no checkpoint will 
be written to the file. 

 

You ll now need to determine what caused the task to fail. It could be that there 
is an issue with the underlying data that s referenced by the task and you just 
need to clean up the data. There might also be a problem with the task itself, in 
which case you ll need to resolve the problem by opening the package and 
making changes to the task. Once the cause of the failure has been resolved, the 
package can restart. 

In my case, I know that the task failed because I forced it to, so I just need to 
change the ForceExecutionResult property on Task 2 back to the default value 
of None. 

Since a checkpoint was written for Task 1, this step will be skipped and the 
package will restart on Task 2. 



The Best of SQLServerCentral.com – Vol.7 

120 
 

 

If the cause of the failure was resolved, Task 2 will now succeed and the 
checkpoint file will be updated. 

Since all tasks in the package have now completed successfully, the checkpoint 
file will automatically be deleted. The next time the package is executed, SSIS 
will look for the checkpoint file to determine whether it needs to start from the 
beginning of the package or at a particular task. Since the file was deleted upon 
successful completion of the package, a new file is created and execution starts 
from the beginning of the package. 

Conclusion 

This article is intended to show you the basics of checkpoints in SSIS. Here are 
some of the key points from this article. 

• Checkpoints files do not track the status of parallel tasks/containers.  

• Checkpoints are only available within the control flow, not the data 
flow.  

• The most common value for the CheckpointUsage property is IfExists. 
Rarely, if ever, will you set this property to Always.  

• The easiest way to verify checkpoints are working properly is to add a 
script task and set the ForceExecutionResult property to Failure. 

  



The Best of SQLServerCentral.com – Vol.7 

121 
 

Reporting Services: Read Data from 
SSAS and SQL Server in One Dataset 
By Martin Cremer 

Introduction 

In my last article, ‘Reporting Services: Adding extra columns / rows to a 
matrix’ (http://www.sqlservercentral. 
com/articles/Reporting+Services+(SSRS)/63415/

You can use a similar method to solve another common problem: Reporting 
Services cannot join 2 data sets. If you want to build a table or a matrix which 
holds data from two different SELECT-statements, you have two options: 

) I showed you how to add an 
extra column to a matrix. The basic idea was to write a stored function that 
retrieves the data in the way it is needed. This allows you to expand the 
standard functionality of a matrix which only supports subtotals and totals. 

1. You could use sub reports which suffer from poor performance and 
limited export functionality (Excel).  

2. You could develop a stored function to bring together all the relevant 
data. Then, you have only one SELECT-statement - from Reporting 
Services' perspective.  

In this article, I want to show how to use the second method to retrieve data 
from Analysis Services and a SQL Server relational database in one dataset. As 
you can imagine, this leads to many new possibilities. 

I will reuse the example I had in my previous article. I want to create the 
following report: 

 



The Best of SQLServerCentral.com – Vol.7 

122 
 

For this article, we assume that the actual values Jan 2008-May 2008 come 
from an Analysis Services cube and the target values come from SQL Server 
tables. (Of course, this is not realistic, but I think, it's a good example). If you 
want, you can download a backup of my (tiny little) cube at the end of that 
article. 

The approach is quite straight-forward, but there are a lot of obstacles to 
overcome. Therefore I will describe the process step by step. We have to 
manage 2 main parts: 

1. get data from Analysis Services from T-SQL  

2. get the collected data to Reporting Services:  

Get data from Analysis Services from T-SQL 

Since we want to use the idea of a SQL-Server-Stored function to collect the 
data, we must be able to retrieve data from the cube within T-SQL. 

For this, we are going to use a linked server to the cube and OPENQUERY to 
execute an MDX-Statement which reads the cube data. 

Linked Server to Analysis Services 

You can add a "linked server" to an Analysis Services cube within SQL Server 
Management Studio (when connected to the SQL Server relational database): 

1. Go to Server Objects > Linked Servers  

2. Right click and choose "New linked server ..."  

3. Fill in the fields in the popup:  

• Linked Server: The name you want to use for the linked server - in our 
example "MYCUBE"  

• Provider: Select Microsoft OLE DB Provider for Analysis Services 9.0 
from the drop-down-list  

• Product name: put any name here. It is not needed, but it is not allowed 
to stay empty. I use "empty" in my example.  

• Data Source: the Analysis Services server - in my example "localhost"  



The Best of SQLServerCentral.com – Vol.7 

123 
 

• Catalog: the database of Analysis Services you want to use - in my 
example "Article_Sales"  

 

On the tab "Security" you should set the radio button to "Be made using the 
login's current security context". This will only work if you connect to SQL 
Server with Windows Security. Then this user will also be used to connect to 
Analysis Services. (Of course, you can change the settings according to your 
needs. However, be careful, not to open a security hole) 

Build the appropriate MDX-statement 

Now we need an MDX query to get the data. I assume you are familiar with 
MDX. If not, you can use Reporting Services to create the appropriate MDX-
statement. You can use the Dataset-Designer to create the statement with drag-
and-drop:  



The Best of SQLServerCentral.com – Vol.7 

124 
 

 

When you click on you will see the MDX-statement corresponding to 
that query. 

Of course, this MDX statement is not optimized, so it's better to write a good 
MDX statement manually: 

We start with the MDX statement giving us the customers, months and the 
amount of sold articles: 

select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members *  
 [Month].[Month].[Month].members on rows 
from [Article_Sales]   

Since we need the IDs (we used them for ordering in my last article), we have 
to add the IDs as well. We could do that the same way Reporting Services' 
Dataset Designer does it by adding the ID-attributes. Since this is a cross join it 
is not efficient (in our example we will not see a difference since there is so 
little data, of course). Therefore we add "dimension Properties 
MEMBER_CAPTION, MEMBER_KEY" to our query which will give us the 
desired result - the name and the ID of the dimension element: 



The Best of SQLServerCentral.com – Vol.7 

125 
 

select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members *      
  [Month].[Month].[Month].members  
  dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
from [Article_Sales]   

If you run these two MDX-statements in SQL Server Management Studio as an 
MDX-query, you will not see any difference in the result set, but click on any 
dimension member in a row and you will see two more entries in the popup:  

 

Execute this MDX-Statement with OPENQUERY 

Now we can execute the MDX-Statement with OPENQUERY within T-SQL: 

select * from 
OPENQUERY(MyCube, 'select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members *     
  [Month].[Month].[Month].members 
  dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
from [Article_Sales]')   

The result will contain the following columns: 

• [Customer].[Customer].[Customer].[MEMBER_CAPTION]  



The Best of SQLServerCentral.com – Vol.7 

126 
 

• [Customer].[Customer].[Customer].[MEMBER_KEY]  

• [Month].[Month].[Month].[MEMBER_CAPTION]  

• [Month].[Month].[Month].[MEMBER_KEY]  

• [Measures].[Article Sold]  

We will need these column names later when we access the columns in a SQL-
statement such as 

select "[Customer].[Customer].[Customer].[MEMBER_CAPTION]" from   
OPENQUERY(MyCube, 'select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members * 
  [Month].[Month].[Month].members     
  dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
from [Article_Sales]')     

As you can see we used the column name with quotation marks to access the 
appropriate column. 

This works fine, but it has one limitation: OPENQUERY only accepts a hard-
coded string as the second parameter - neither a variable nor an expression is 
allowed. In our case, this is sufficient, but in real life, it is not: You will want to 
build your MDX-Statement dynamically, because your statement probably 
includes parameters. Then you should build the SQL-String (as shown above) 
dynamically and execute it with sp_executesql. 

Let's assume the year is passed to the stored function parameter @year. Then, 
our SQL-Statement would look like: 

declare @year as nvarchar(4) 
set @year = '2008' -- this simulates a passed parameter 
declare @mdx as nvarchar(4000) 
set @mdx = 'select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members      
  * [Month].[Year_Month_Hierarchy].[' + @year + '].children 
  dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
from [Article_Sales]' 
declare @sql as nvarchar (4000) 
set @sql = 'select * from OPENQUERY(MyCube, ''' + @mdx + ''')' 
exec sp_executesql @sql     

[Be careful not to forget the ''' before and after @mdx.] 



The Best of SQLServerCentral.com – Vol.7 

127 
 

Side remark "allow inprocess" 

Sometimes the above shown OPENQUERY-statement gives an access denied-
error. For my case it did on 2 production servers. However, on my local 
machine it worked perfectly fine. 

This error can be fixed by allowing inprocess for the MSOLAP-Provider for 
Linked Servers. 

You can set this property with the following steps: 

1. Go to Server Objects > Linked Servers > Providers > MSOLAP  

2. Right click and choose "Properties"  

3. Enable "Allow inprocess"  

 



The Best of SQLServerCentral.com – Vol.7 

128 
 

Microsoft advises to set this property for performance issues anyway. 

Now we've finished the first task of accessing the Analysis Services cube. It's 
now time to address the second task of bringing this data into Reporting 
Services. 

Reporting Services gets the desired data 

Replace the SQL statement of the last article's example by the OPENQUERY-
SQL 

The SQL statement of my last article, which reads the actual data, was 

SELECT ArticleSales.CustomerID, Customers.CustomerName, 
ArticleSales.MonthID, 
Months.Monthname, ArticleSales.ArticleSold   
FROM ArticleSales INNER JOIN 
 Customers ON ArticleSales.CustomerID = Customers.CustomerID 
INNER JOIN 
 Months ON ArticleSales.MonthID = Months.MonthID     

In order to use the OPENQUERY-statement the same way as the old statement, 
the OPENQUERY-statement should return the 5 needed columns in the 
appropriate order. This is easy with what we have learned above. I added the 
@columns-variable into my script: 

declare @mdx as nvarchar(4000) 
set @mdx = 'select [Measures].[Article Sold] on columns, 
non empty [Customer].[Customer].[Customer].members      
 * [Month].[Month].[Month].members     
 dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
from [Article_Sales]' 
declare @columns as nvarchar(4000) 
set @columns = 
'"[Customer].[Customer].[Customer].[MEMBER_KEY]",   
"[Customer].[Customer].[Customer].[MEMBER_CAPTION]",   
"[Month].[Month].[Month].[MEMBER_KEY]",   
"[Month].[Month].[Month].[MEMBER_CAPTION]", 
"[Measures].[Article Sold]"' 
declare @sql as nvarchar (4000) 
set @sql = 'select ' + @columns + ' from OPENQUERY(MyCube, ''' 
+ @mdx + ''')' 
exec sp_executesql @sql     



The Best of SQLServerCentral.com – Vol.7 

129 
 

Actually we should convert the columns to the appropriate data types, since 
OPENQUERY returns ntext for all the column results. In order to convert them 
to int, we first need to convert them to nvarchar(...). Therefore, the @columns-
variable should finally read like the following: 

set @columns = 'convert(int, convert(nvarchar(10), 
"[Customer].[Customer].[Customer].[MEMBER_KEY]")) as 
CustomerID,   
convert(nvarchar(50), 
"[Customer].[Customer].[Customer].[MEMBER_CAPTION]") as 
CustomerName,  
convert(int, convert(nvarchar(10), 
"[Month].[Month].[Month].[MEMBER_KEY]")) as 
MonthID,  
convert(nvarchar(50), 
"[Month].[Month].[Month].[MEMBER_CAPTION]") as MonthName,  
convert(int, convert(nvarchar(10), "[Measures].[Article 
Sold]")) as ArticlesSold'     

Stored Procedure 

Since we need to use sp_executesql in our SQL-statement, we cannot use a 
stored function any more. If you try, SQL Server produces the following error: 

Only functions and extended stored procedures can be executed 
from within a function.     

Ok, so now we have a problem. 

We now need to change the stored function to a stored procedure. 

The first idea is to use a @CrossTab-table-variable, then the changes will be 
minor. This will not work, however, since this variable will not be accessible 
within sp_executesql. Therefore, we must use a temporary table, #CrossTab. 
The changes in detail: 

• In the beginning we create the #CrossTab manually  

• We replace all the references of @CrossTab to #CrossTab  

• In the end we return all the entries of the #CrossTab  

• In Reporting Services, we execute the Stored Procedure instead of the 
Stored Function 



The Best of SQLServerCentral.com – Vol.7 

130 
 

The changes in Detail: 

 Old text New text 

Start CREATE FUNCTION [dbo]. 
[createReportExample3] () 
RETURNS  
@CrossTab TABLE  
( 
rowSort int,  
rowDesc nvarchar(50), 
colSort int, 
colDesc nvarchar(50), 
value int 
) 
AS 
BEGIN 

CREATE PROCEDURE [dbo]. 
[createReportExampleWithAS2]  
as 
BEGIN 
CREATE TABLE #CrossTab  
( 
rowSort int,  
rowDesc nvarchar(50), 
colSort int, 
colDesc nvarchar(50), 
value int 
) 

References INSERT INTO @CrossTab 
(rowSort, rowDesc, colSort, 
colDesc, value) 

INSERT INTO #CrossTab (rowSort, 
rowDesc, colSort, colDesc, value) 

Return 
values 

RETURN SELECT * FROM #CrossTab 

Reporting 
Services 

SELECT * FROM 
dbo.createReportExample3() 

exec 
dbo.[createReportExampleWithAS2] 

Missing fields in Reporting Services 

So far, our approach was simple and straight-forward. There is only one 
problem: it is not going to work: 



The Best of SQLServerCentral.com – Vol.7 

131 
 

Reporting Services cannot detect the fields of the temporary table correctly. 
There will not be any fields contained in this dataset and, henceforth, we cannot 
build our report :-( 

You could try to add the fields manually, either in the datasets-window when 
right-clicking on the appropriate dataset or when editing the selected dataset 
(button ... in tab "Data") in the "Fields" tab. 

I managed to enter the numeric fields (rowSort, colSort, value), but failed to 
enter the string fields (rowDesc, colDesc). As soon as I enter them I get an 
error when executing the reports, even if this field is not shown on the report: 

Index was outside the bounds of the array.   

(I think this is a bug in Reporting Services or the OLE DB driver, but - any way 
we have to live with it.)Therefore we have to find another solution. 

Non-temporary tables 

Since temporary tables do not work, the next option is to create a real table (In 
my example, I will call it ExampleReport-table). 

Of course, you could use global temporary tables like ##CrossTab. These tables 
vanish when the last connection is closed which uses this table. If two users 
accessed the report at the same time, we would need to check the existence of 
the ##CrossTab-table which would not make the solution simpler. 

When we use real tables, we must make them "multi-session-proof". This 
means, the solution must work in circumstances as well, when 2 (or more) 
users call the report the same time. Therefore, our stored procedure cannot 
simply empty and fill the table. 

The most straight-forward method is to have a column in the real table which 
holds the session information. This means some changes for the stored 
procedure: 

• The table does not need to be created inside the stored procedure any 
more.  

• At the beginning of the stored procedure, a session-identifier is created. 
The best data type for the session-identifier is a uniqueidentifier 



The Best of SQLServerCentral.com – Vol.7 

132 
 

(Guid), because this is unique for every stored procedure call by 
default. From now on I will call it session-guid  

• All inserts into the table need to insert the session-guid as well.  

• Even more important, all selects from the table must have an extra 
WHERE-condition to make sure we only retrieve the data of the 
current session.  

• In the end, you can delete the records in the table belonging to this 
session.  

There is one crucial point: You must double check that you added the WHERE 
SessionGuid = @sesGuid condition to every SELECT-statement. You will not 
receive an error message as you do when you forget it in the INSERT-
statement, but you will retrieve wrong data. 

Therefore, I encourage you to omit the delete-statement first and check whether 
or not you're getting the correct data. In this test, the table is filled with lots of 
data rows, which simulates the simultaneous execution of the stored procedure. 

Now we have succeeded, and our changed code generates the result shown at 
the very beginning. (I did not speak about the layout of the report since this did 
not change from the last article). 

Here is the SQL-statement for the table ...  and the stored procedure in our 
example: 

Note: This code is at www.sqlservercentral.com 

Some final remarks 

When you want to put this solution into production, you have to consider error 
robustness. We need to add this to our solution: 

Try - Catch when reading data from Analysis Services 

I do not want to talk about problems arising if the SQL Server or Analysis 
Services are down, because you will need to have a solution for this anyway (or 
the decision you don't need it). 

Often, with solutions such as this one, errors can occur, which need to be 
handled: 

http://www.sqlservercentral.com/�


The Best of SQLServerCentral.com – Vol.7 

133 
 

Assume the MDX-statement does not return any data. We can force this 
situation by adding a filter on the year 2007: 

select [Measures].[Article Sold] on columns, 
 non empty [Customer].[Customer].[Customer].members 
  * [Month].[Month].[Month].members      
  dimension Properties MEMBER_CAPTION, MEMBER_KEY on rows 
 from [Article_Sales] where (Month.Year.[2007])   

Then we will get a result set with 1 column "Article Sold" but no row. 

Therefore, our OPENQUERY does not return the columns which we expected. 
This means the SELECT * FROM OPENQUERY(.. would work fine, but the 
SELECT 
"[Customer].[Customer].[Customer].[MEMBER_CAPTION]", ... 
FROM OPENQUERY(... will lead to an error: 

Invalid column name 
'[Customer].[Customer].[Customer].[MEMBER_KEY]'.   

Since this error can occur, so we need to take care of that error. 

The best method is to wrap the SELECT OPENQUERY part into a try-catch-
block. 

Now the error is caught and we have to decide what needs to be done. In our 
example, it is quite easy. Since there is no actual data, there should not be any 
columns in our matrix. Therefore, we do not do any inserts. This means our 
Catch-Block does not do anything. Depending on your situation, this may vary. 

In our example, the part of the code looks like: 

declare @sql as nvarchar (4000) 
 set @sql = 'INSERT INTO ExampleReport (sessionGuid, rowSort, 
rowDesc, 
 colSort, colDesc, value) 
 select ''' + convert(nvarchar(100), @sesGuid) + ''', ' 
 + @columns + ' from OPENQUERY(MyCube, ''' + @mdx + ''')' 
 BEGIN TRY 
   exec sp_executesql @sql 
 END TRY 
 BEGIN CATCH 
   /* An error would arise if the MDX does not return any rows 
*/ 



The Best of SQLServerCentral.com – Vol.7 

134 
 

   /* In this case we do not need to do anything */ 
 END CATCH   

Of course, the error handling could be more sophisticated. You could check 
whether the MDX works but does not return a row. With this, you could 
distinguish between "Server unavailable" and "no data". For my example, this 
is not necessary. 

Next steps 

Now you have a method which allows you to gather data from different data 
source types (ORACLE, SQL Server, Analysis Services ...) or different cubes, 
for example. 

In one of my productive reports, I used it for getting information from two 
different cubes. This solution was superior (in terms of performance) to 
building a bigger cube and having a complex MDX-statement gather the data in 
one statement. 

In real-life scenarios, you will naturally have parameters for the stored 
procedure, but this is not a problem to implement, so I did not cover this 
subject. 

Example data 

You can download the example here. This includes 

• The SQL scripts for the demo data  

• The SQL scripts for the stored procedure and the table  

• The solution which holds the Reporting Services and Analysis Services 
example  

• A backup of the Analysis Services database.  

Acknowledgements 

I want to thank bteague for reading my draft of this article and his valuable 
comments. 



The Best of SQLServerCentral.com – Vol.7 

135 
 

SQL Server 2008 Mirroring Testing 
By Jason Shadonix 

Overview 

One of the areas improved for SQL 2008 is database mirroring. Two of the 
improvements listed in Books Online that caught my eye are compression of 
data sent across the network (at least 12.5 % compression ratio according to 
books online), and "Write-ahead on the incoming log stream" on the mirror 
server. I decided to do some simple testing to see if these changes made a 
noticeable difference. 

Setup 

For testing purposes, I used basic workstation-class development machines. 
The machine that served as the principal was running XP-Pro, and the machine 
serving as the mirror was running Server 2003 standard. For both machines I 
installed SQL 2005 Developer Edition (SP2) and SQL 2008 Developer Edition 
(RTM). I installed both instances as named instances, and while testing only 
started the instance that I was using for the test. 

For the test database, I used a copy of one of our production databases (about 
4GB in size) and configured the mirroring for high-safety with no automatic 
failover. To simulate a load, I wrote a simple script that inserted records at a 
steady pace, and a script that randomly updates records at a steady pace. 
Mirroring sessions were set up as high safety (synchronous) without automatic 
failover. 

I found that the scripts I had developed for configuring database mirroring in 
SQL 2005 worked for SQL 2008 without modification. In fact from what I can 
tell by scanning Books Online, there are no obvious changes to configuring and 
administering database mirroring in 2008. All of the changes are under the 
hood. 

I tested mirroring from a 2005 principal to a 2005 mirror, a 2005 principal to a 
2008 mirror, and from a 2008 principal to a 2008 mirror, and ran each test for 
about 7 min, using perfmon counters to collect data every 15 seconds. 



The Best of SQLServerCentral.com – Vol.7 

136 
 

I found it interesting that SQL allowed a 2005 principal to mirror to a 2008 
server. While I was playing around I observed that the mirroring seemed to 
work fine with this setup, but it did not allow you to take snapshots (from what 
I can tell, this is because the 2005 database isn't actually upgraded to 2008's file 
structure until the recovery process in a database restore runs). If you manually 
fail over to the mirror server, it prints out messages saying it is upgrading the 
database to 2008. I didn't test it, but I assume this means you can't put that 
database back on a 2005 SQL server. I don't know how much support you will 
get mirroring like this for long periods of time, but Books Online briefly 
mentions a rolling upgrade strategy to upgrade mirrored servers from 2005 to 
2008 that involves upgrading the mirror server first, so I think all of the 
behavior I observed is by design. Just something to keep in mind. 

Results 

The amount of data writes to disk increased slightly (about 10%) when using 
SQL server 2008. I assume this is a result of the way 2008 is simultaneously 
writing log records to disk and processing log records. Unless the disks on your 
mirror server are stressed to begin with, this is probably insignificant. 

 



The Best of SQLServerCentral.com – Vol.7 

137 
 

CPU usage on the principal server when mirroring from a 2008 principal to a 
2008 mirror was significantly higher for a few minutes, then settled down to be 
roughly the same as 2005 mirroring for the remainder of the test. I'm not sure 
how to account for this. I was expecting a slight increase in CPU usage due to 
overhead in compressing the log stream, but that is not what is observed. I 
would expect the CPU usage to vary a little bit based on the size of the data 
changes made, data types involved, etc. 

 

The counters perfmon provides for database mirroring network traffic indicate 
that SQL server 2008 mirroring does indeed result in less network traffic. Total 
bytes sent per second decreased by about 32%, log bytes sent per second 
decreased by about 15%, and total sends per second decreased by about 34%. 
Mirroring from a 2005 principal to a 2008 mirror server showed little if any 
difference than 2005 to 2005 mirroring. Again, I would expect this would vary 
quite a bit based on the type of data you have in your database. 



The Best of SQLServerCentral.com – Vol.7 

138 
 

 

 



The Best of SQLServerCentral.com – Vol.7 

139 
 

 

Conclusion 

For the test setup I used, I did indeed see a potentially significant decrease in 
the amount of network data sent when using SQL 2008 mirroring. With the 
exception of the disk performance, mirroring from SQL 2005 to SQL 2008 
shows little if any performance difference than 2005 to 2005 mirroring. If your 
network capability in your mirroring environment is currently a bottleneck, 
then SQL 2008 mirroring may help you out a little bit. This feature alone 
probably doesn't justify an upgrade, but it's a nice bonus if you are upgrading 
for other reasons also. I also really like the fact that there are no changes to the 
mirroring setup between the two versions so all of your mirroring scripts will 
still work. (I did not play with the GUI that SSMS offers for setting up 
mirroring, so can't comment on whether or not they are different between 2005 
and 2008). 

Disclaimer 

These results are what I happened to achieve today while running tests. Actual 
results may vary based on database characteristics, network characteristics, 
server characteristics and the alignment of Saturn's moons. Do your own testing 
rather than relying on this article to make important upgrade decisions 



The Best of SQLServerCentral.com – Vol.7 

140 
 

On-Call Duties 
By TJay Belt 

It's Monday morning, and your calendar reminder just popped up and let you 
know that you are on call. Since its Monday morning, and you got in before 
anyone else, to have some alone time with your systems, this is the perfect time 
to start in on your on-call duties. Where to begin? Which task do you perform 
first? What tasks were performed last by the preceding on-call rotation 
individual? I hope to stimulate some thought on this process and get you ready 
to better satisfy the time you have to monitor your systems and ensure their 
availability and uptime.  

I would first like to suggest that you keep a diary or record of tasks, and their 
results. This record will allow others to see what has and has not been done 
previously. It will allow you to start a baseline and gather metrics. See trends 
and patterns. We have chosen a simple spreadsheet that keeps track of tasks, 
results and other gathered data. A template tab exists to copy from, to a new 
tab. Each day a new tab is created and populated. As you complete tasks, the 
results are filled in. Those tasks that do not get completed simply have no 
results associated with them. This way others can look back on specific days 
and see what results were, or which items were not done. The need to 
completely fill in all tasks will be determined in your individual companies and 
teams. Each server that we are responsible for has a column in this spreadsheet, 
where individual data can be collected, on a per server basis.  

Some of the items that we have on our task list are as follows. 

Scan OS error events.  

In Computer Management, in the Event Viewer, we perform a review of the 
errors that appear in the Application, Security, and System sections. Filter each 
of these sections by errors and look for anything that has occurred since the last 
time this process was completed. Anything that appears in these sections, detail 
it in your record keeping, and you may even have to dig in and find out the 
reasons for it, and mediate it. This task can be quick, or occur over a few days, 
depending on the events that you encounter. 

  



The Best of SQLServerCentral.com – Vol.7 

141 
 

Check on Backups  

We all have maintenance plans, 3rd party solutions, or whatever to ensure we 
have backups of our systems. Whatever the solution you have, make it a habit 
to check it as often as you can while on call. Ensure that backups are being 
processed properly. If you do this on a daily basis, while on-call, odds of you 
going a couple days without a backup will diminish greatly. Unfortunately, 
most shops that implement this task usually do so after finding no exhausting 
backups for a period. Don't let this happen to you. 

System specific output files  

You may have reports, text files, dumps, snapshots, etc. that are output from 
your system. These will be for a variety of reasons. Identify them, document 
them, and then monitor them. Ensure that they are occurring on a regular basis, 
and that you have the means to prove so.  

Log and data file sizes  

To keep a handle on the growth of your systems, you should devise a way to 
monitor and keep tabs on the sizes of your database files. A simple solution is 
to run a query that gathers all this info, and paste it into a spreadsheet. More 
complex solutions could be implemented. The end result needs to be that you 
know the sizes of these files, and be able to have metrics over time to help you 
plan and monitor those systems. Doing this task on a daily basis, while on-call, 
will help keep tabs on growth and expected results.  

Space available/Free space on drives  

We could have other processes that take up space on our servers. Maybe these 
reside on your drives with your data files. If this is the case, you need to 
monitor the free space to ensure that your databases don't run up against a wall. 
This has occurred to me on simple database servers, and the results are often 
wild and unpredictable. This task may not be relevant in all of your systems or 
database servers. However, I think it's worth noting, and thinking about, at least 
to discount it as a necessary task. If it is necessary, add this into your on-call 
duties.  

Replication health check  



The Best of SQLServerCentral.com – Vol.7 

142 
 

If you have replication executing on your systems, how do you monitor it? 
How do you know that it is functioning properly? What about latency? Can you 
tell what latency is during peak times, compared to non-peak times? You may 
have third party replication or native replication. Determine the best way to 
monitor it, and document it. Gathering the data associated with it and creating a 
baseline will help solve future issues as well. 

Scan SQL Server Logs  

Something that is often missed is simply looking into the SQL Server Logs. 
Make it a habit to scan these logs and you will soon become more 
knowledgeable about the logs and what they can teach us. Make it a habit to 
peruse them on a repeatable basis, and document what you see. 

Other Notes of Interest  

During your on-call rotation, you may encounter odd things that need to be 
noted. Make sure you comment on these and document them. If you resolve 
them, document this as well. Other individuals will greatly appreciate your 
notes and observations of these odd occurrences. If persistent, you may want to 
add them into the above rotation. 

Specific Needs  

Since your shop will have specific needs, you will need to come up with more 
of these tasks. You may have items that do not appear on this list that you need 
to add to your on-call duties. Share these with the rest of us, as well as your 
fellow DBA's at your shop. 

If we can take the time, when we are not head-long into problems of the day, 
we can better gather our wits about us, and devise solutions to make our jobs 
easier, more automated, and successful. This is an important hump to get over, 
so that you are not fire-fighting all the time, but have a plan of action to solve 
issues as they arise. Keeping a record of these tasks, and results is a sure-fire 
way to see patterns and way to fix those pesky problems that always seem to 
get placed on the back burner. By creating metrics to measure yourself by, you 
can spend more time on the important tasks, and not just fix things as they 
appear. There's nothing like 'knowing' that your systems are healthy, and being 
able to prove it. 

  



The Best of SQLServerCentral.com – Vol.7 

143 
 

Configuring Replication for Partitioned 
Tables Using T-SQL 
By Michelle Ufford 

By default, partitioning schemes are not persisted when replicating partitioned 
tables to a subscriber. This can be nice if you want to replicate partitioned data 
from SQL 2005 Enterprise to SQL 2005 Standard (where partitioning is not 
supported), but most of the time, you probably want the replicated table to be 
partitioned, too. This post will walk you through the basics of creating 
transactional replication for a partitioned table to ensure the subscription table 
is also partitioned. 

First, let's set up our test databases and data: 

Note: This code is available at www.sqlservercentral.com 

Up until now, this has been pretty straight forward. This next step is where we 
specify the bitwise product for article options. We're going to specify that we 
want to copy partitioning schemes for tables and indexes, and we also want to 
copy nonclustered indexes. 

Personally, I prefer to cheat and let SQL Server tell me what the appropriate 
bitwise product should be for a given article. To do this, I walk through the 
process of creating a new article using the GUI, then I script it out and snag the 
@schema_option value. 

 



The Best of SQLServerCentral.com – Vol.7 

144 
 

 

 



The Best of SQLServerCentral.com – Vol.7 

145 
 

 

Using the @schema_option above let s now create our article. 

Note: this code is available at www.sqlservercentral.com 

You can find more about the @schema_option under sp_addarticle on Books 
Online (http://msdn.microsoft.com/ 
en-us/library/ms173857.aspx) 

Now let's finish up with our script to create the snapshot and add a subscription, 

Note: this code is available at www.sqlservercentral.com 

When everything is done, check your subscriber and ensure your table has been 
created. Also verify that the table is partitioned. If you do not see it right away, 
wait a minute and try again... SQL Server just may not have caught up yet. 

 USE sandbox_subscriber;    
 GO    
 /* You should now have a partitioned table with a partitioned 
    nonclustered index in your subscription database... */    
 EXECUTE sp_help N'dbo.orders';   

http://msdn.microsoft.com/en-us/library/ms173857.aspx�
http://msdn.microsoft.com/en-us/library/ms173857.aspx�


The Best of SQLServerCentral.com – Vol.7 

146 
 

 

It may sometimes be beneficial to use a different partitioning scheme on the 
subscription table. In that case, create the table on the subscriber in advance 
using the desired partitioning scheme; then specify that, during initialization, 
the objects should be retained if they already exist. 

 

I hope that helps get you started with replicating partitioned tables. In my next 
post, we'll walk through the process of swapping out a partition on a replicated 
table (SQL 2008 only). For more information on partitioning, please check out 
the following resources: 

• SQLFool - Partitioning posts - http://sqlfool.com/tag/partitioning/  

http://sqlfool.com/tag/partitioning/�


The Best of SQLServerCentral.com – Vol.7 

147 
 

• Partitioned Tables and Indexes in SQL Server 2005 - 
http://msdn.microsoft.com/en-us/library/ 
ms345146.aspx  

• Querying Data and Metadata from Partitioned Tables and Indexes - 

Performance Implications of Database 
Snapshots 

http://msdn.microsoft.com/en-us/library/ms187924.aspx  

By Gail Shaw 

Database snapshots are a new feature of SQL Server 2005. They offer a read-
only, point-in-time view of a database. There have been some articles published 
here explaining what they are and discussing possible uses for them, but not 
about the performance impact of multiple snapshots, so I thought I'd take a look 
at that. 

All examples shown here were done on a Windows XP, service pack 2 
machine, running SQL Server 2005 Developer edition, RTM. 

Statistics 

The SQL Books Online states that performance may be decreased due to 
increased I/O on database snapshots. After running into a performance problem 
involving snapshots I decided to do some tests to see exactly how the 
performance of some typical operations degraded when using snapshots. 

I set up a database with a sample table with 40 000 rows in it. The table had an 
int and a char(3000) column, ensuring that only two rows would fit onto a page. 
The int column was an identity and the clustered index. 

For the first test, I inserted four sets of 5000 rows, taking care that each set 
affected different rows, and hence different pages. The database was restored 
from backup after each set. The first sets of tests were done with no snapshots 
on the database. I then ran tests with one, two, three, four and five snapshots. 
For each, I measured how long the data modification would take and how long 
a subsequent checkpoint operation would take. 

http://msdn.microsoft.com/en-us/library/ms345146.aspx�
http://msdn.microsoft.com/en-us/library/ms345146.aspx�
http://msdn.microsoft.com/en-us/library/ms187924.aspx�


The Best of SQLServerCentral.com – Vol.7 

148 
 

Likewise, I did tests where I deleted four sets of 5000 rows and updated four 
sets of 5000 rows, again with the database restored after each set of tests and 
the tests were done with differing numbers of snapshots in place 

As the graphs show, the duration of the operations increases significantly as the 
number of snapshots that needs to be updated increases. 

 

 



The Best of SQLServerCentral.com – Vol.7 

149 
 

 

From the results, it would seem as though large numbers of snapshots can 
seriously degrade database performance. The tests were done on a workstation, 
with all the files on a single drive, so the effects won't be so pronounced on a 
properly configured server with multiple properly configured drives, but it is 
still something to be watched. 

While I was expecting an increase in the durations, I was not expecting a 
increase of this magnitude. In the case of deletes and updates, the difference in 
time to affect 5000 rows with no snapshots and with five snapshots is a factor 
of fifty! 

I also did a quick test on a server (16 processor, 64 GB memory, SAN storage, 
SQL 2005 Enterprise SP2) to see how a number of snapshots affected delete 
speed on a high-powered machine. I wasn't being as careful as with the earlier 
experiments, but this does go to show that the performance degradation affects 
well-configured servers as well as desktop PCs. 

I had a table with several million rows in and I was deleting 5000 at a time. 8 
tests were done with each number of snapshots and the resulting times were 
averaged. The graph below shows how the delete time varied with the number 
of snapshots present. 



The Best of SQLServerCentral.com – Vol.7 

150 
 

 

A recent post (http://blogs.msdn.com/psssql/archive/2008/02/07/how-it-works-
sql-server-2005-database-snapshots-replica.aspx

Normally, when SQL modifies a data page, the data page is changed in 
memory and only the log record is hardened to disk before the transaction is 
considered complete. 

) by the PSS Engineers 
described in detail how IOs work in a snapshot, and the reason for the increase 
in duration. 

Since snapshots do not have a transaction log, changes to the snapshot cannot 
be written to the log, but must be written directly to the data file. Hence, when 
a transaction modifies a page that must be written to a snapshot, to ensure 
durability the write of that page must be completed to disk before the 
transaction that modified the page is considered complete. This increases the 
number of physical disk writes that must be done during the transaction. 

If the IO system that the snapshot is stored on is slow (as in my case with the 
initial experiment, since I was using a workstation PC), these additional writes 
(1 per snapshot file) can cause quite substantial slow downs in the source 
database. 

This also explains why the checkpoint process does not show any appreciable 
increase in duration as the number of snapshots increases. Since the copy-on-
write is done as part of the data modification statement, the checkpoint has no 
extra work to do. 



The Best of SQLServerCentral.com – Vol.7 

151 
 

Conclusion 

While database snapshots have their uses, they are not without side-effect. 
Planning should be carefully done when using snapshots, especially if large 
numbers of snapshots are needed, or they are needed for long periods of time. 

Depending on the capacities of the IO system, the extra load that the snapshots 
impose may be unnoticed, or it may drag the system down completely. Careful 
testing should be done before using them in production environments, 
especially in systems where fast transactions are essential. 

Filtering Unneeded Dimension Members 
in PerformancePoint Filters 
By Boyan Penev 

Sometimes we need to utilise dynamic dimension security in an Analysis 
Services solution and we also need to display dynamically the allowed 
members in a PerformancePoint filter. 

In case our hierarchy is multi-level and in case we can expect to have security 
on multiple levels, PerformancePoint will display the full path upwards to the 
root member of the dimension. So, in the case where in a Business Unit 
hierarchy we have access to some third level members, in PerformancePoint we 
will see all their parents. In example if our hierarchy looks like this: 

  All Business Units 
 - Europe 
   - UK 
   - France 
   - Bulgaria 
 - North America 
   - USA 
   - Canada   

And we give someone access to France, they will in fact see: 

  All Business Units 
- Europe 
   - France   



The Best of SQLServerCentral.com – Vol.7 

152 
 

Indeed, when they select All Business Units or Europe they will still see only 
France data but this may be confusing. To eliminate the top levels we need to 
change the way we create our PerformancePoint filter. 

To achieve this, first we need to create a MDX Query filter. For more 
information about PerformancePoint filters and dynamic dimension security 
you can read the following brilliant post on Nick Barclay's blog: PPS Data 
Connection Security with CustomData. Nick explains how to set up 
PerformancePoint to work with Analysis Services dynamic dimension security 
and related topics. I will now concentrate on actually filtering the members of 
the already set-up MDX Query filter. 

Instead of requesting all dimension members with a simple statement like: 

DESCENDANTS([Business].[Business Hierarchy].Members,, 
SELF_AND_AFTER)   

We can write some fairly simple MDX which means: 

Get me the descendants of all dimension members whose ascendants 
(excluding themselves) have no more than one child. 

And the MDX code is: 

DESCENDANTS( 
 FILTER([Business].[Business Hierarchy].Members AS a, 
 ((FILTER(ASCENDANTS(a.CurrentMember) AS a_asc, 
 a_asc.CurrentMember.CHILDREN.Count > 1).Count = 1) 
 And 
 a.CurrentMember.Children.Count > 1) 
 Or 
 ((FILTER(ASCENDANTS(a.CurrentMember) AS a_asc, 
 a_asc.CurrentMember.CHILDREN.Count > 1).Count = 0) 
 And 
 a.CurrentMember.Children.Count = 0)) 
,,SELF_AND_AFTER)   

The result will be France being displayed as the only available member in the 
PerformancePoint drop-down. Also, if we had two different allowed members, 
the code above would show us the top common parent of the two. Therefore, if 
we had France and Canada as the allowed set of dimension members, the drop-
down would consist of the following hierarchy: 



The Best of SQLServerCentral.com – Vol.7 

153 
 

All Business Units 
 Europe 
   France 
 North America 
   Canada   

Thus satisfying our requirements. 

Powering up DTS with PerlDTS 
By Alceu Rodrigues de Feitas Junior 

Introduction 

When implemented together with MS SQL Server 2000, DTS offers several 
features to help managing ETL processes, including process automation, 
scheduling and notification. While DTS is considered a RAD tool, the true 
capabilities of DTS are only unrevealed when its exposed API is used. 

While the documentation includes steps for Visual Basic or Visual C++ to use 
or extend DTS, such programming languages are not the ideal ones for 
developing applications quickly (considering that they will run in the 
background). Interpreted languages are much more suited to doing jobs like 
executing DTS packages outside Enterprise Manager or scheduling a task, for 
example. 

Any interpreted programming language that supports COM can deal with DTS 
API, like Vbscript or Perl. With several years being part of system 
administrator and programmers tools, Perl is a natural choice for being used as 
a glue language for DTS ETL tasks, specially if one considers the amount of 
several read-to-use modules available in CPAN, dealing with the most different 
problems that a programming language can solve. 

Being a Perl programmer for a couple of years and inspired by the article 
“Flexible DTS Packages with Perl” 
(http://www.sqlservercentral.com/articles/DTS/flexibledtspackageswithperl/18
18/) of Jeremy Brown (published in this very website!), I decided to give a try 
to write Perl code to deal with DTS API when some tasks became too boring to 
solve with click-and-drag procedures in DTS designer. 



The Best of SQLServerCentral.com – Vol.7 

154 
 

Enter PerlDTS 

PerlDTS is the name of the project I created to hold several Perl classes that 
represents DTS classes in a more natural way (for a Perl programmer 
perspective). 

In the article mentioned, the author teaches how to use the module 
Win32::OLE to connect to DTS API. While Win32::OLE is the backbone of 
PerlDTS project, using it can be cumbersome for a Perl programmer because it 
deals with details of MS Windows operational system (like converting variable 
types) that brings complexity into the problem a programmer is trying to solve. 
Talking about DTS API this is even worse, because documentation expects that 
the programmer will use Visual Basic, Vbscript or Visual C++. I had to 
improve a fair amount of my Vbscript skill just to understand the examples. 

PerlDTS is different. I implemented a lot of DTS API classes (and there is still 
a lot of other ones to implement) using an interface that is pure Perl code with 
added syntactic sugar for convenience. Since I did this, my job got much easier 
when I was in a project dealing with hundreds of DTS packages to implement 
batch integration with Oracle Siebel CRM. 

What can Perldts do? 

The nowadays implementation of Perldts allows a programmer to: 

• Search and query information of DTS packages.  

• Execute DTS packages and retrieve execution information.  

Differently of the article of Jeremy Brown, I did not implemented anything 
related to the capability of creating DTS packages on the fly, keep them only in 
memory, executing and ceasing to exists as soon the program job is over. I'll 
comment those implementations decisions latter in the article. 

Right now, instead of telling all features of PerlDTS, I invite the reader to 
check some program examples that I'll comment here to get a grasp of the 
project and, maybe latter, check the online documentation and UML diagrams 
for more details in the project website. 

  



The Best of SQLServerCentral.com – Vol.7 

155 
 

Why took you so long to release this? 

Maybe you're asking yourself that question since MS SQL Server 2008 is 
already available and version 2000 is quite outdated. It's a fair question. 

Well, the answer is "I was quite busy". I started working with DTS packages in 
2006 and took me a while before releasing something more than a distribution 
tarball in CPAN. Anyway, I wanted at least to document the distribution before 
releasing it and here it is, as free software. 

Examples of using 

Let's start with a very simple example: connect to a SQL Server database and 
search for DTS packages with a name that matches a regular expression. Here 
is the code: 

Note: this code is available at www.sqlservercentral.com 

The program starts with the usual lines expected for a Perl program and loads 
the modules DTS::Application and XML::Simple. All modules of PerlDTS 
project starts with the package name "DTS". This will change very soon to the 
registered name I got in CPAN called Win32::SqlServer::DTS. 
DTS::Application is, in most cases, the unique module will need to load, since 
from it you can fetch all other classes and methods. 

For all examples, we will use a XML file with the details of connecting into the 
SQL Server and that's why we are using XML::Simple, that will read a XML 
file and return an hash reference with the keys the method new of 
DTS::Application expects. 

Once connected to a SQL Server database, DTS::Application got its method 
regex_pkgs_names, expects a regular expression to match the DTS package 
name and returns a list in a form of an array reference. This one was easy! 

What about implementing a simple script to backup the DTS packages in a zip 
file? 

Note: this code is available at www.sqlservercentral.com 

Here we load the DTS::Application class to connect to the server and retrieve 
DTS packages for us. 



The Best of SQLServerCentral.com – Vol.7 

156 
 

There is a list of DTS packages to save in the modify.xml XML file. The 
DTS::Application object will them loop over the package names list and try to 
fetch them as DTS::Package objects, which is returned by invoking the method 
get_db_package. 

A DTS::Package object is capable of saving itself to a structured file with the 
save_to_file method, but there is a price when doing that: all design made in 
the DTS designer will be lost. That means that beautiful diagram you made, 
with comments and everything will be lost. Every time the Enterprise Manager 
opens a DTS package saved as a structured file, it will try to recreate the design 
automatically. The result is usually ugly (and sometimes very ugly) to see and 
understand what's going on. Looks like Microsoft engineers didn't want to 
implement design persistence, because this a problem with the DTS API itself, 
with no workaround documented. 

To make a job with better quality, I decide to load the modules Archive::Zip 
and DateTime to create zip files with the date of the backup in the filename 
(thanks CPAN!). 

In the next example, we will fetch a DTS package, retrieve one of it's dynamic 
property task and change a assignment of it, saving the package after that. 
Modifying properties of a DTS package is a detail that deserves some 
comments about because it's not all properties that can be modified and used 
latter. 

Note: this code is available at www.sqlservercentral.com 

DTS::Assignment::Destination is a few of the classes that has set methods that 
allow changes to a object. Most of the classes are "read only" in this aspect 
because the absence of set methods in the DTS distribution but it is still 
possible to execute the method get_sibling available in almost all of the classes 
and fetch the original object from the original DTS API and change the value 
there. 

Of course, any change made in the inner objects of a package will change their 
state if the method save of the package object is not invoked. 

A real case of use 

During development of the DTS packages, me and the other guys of 
development team were caught in a situation that we need to do unit tests with 



The Best of SQLServerCentral.com – Vol.7 

157 
 

the DTS packages before moving them to environments of QA and production. 
Whenever we try to move a package, we find out that we forgot to activate a 
property or set the correct value to it, and those problems were repetitive. 

I implemented some automated unit tests to verify those know problems and 
caught them even before trying to move a DTS package to other environment. 
These let us know to concentrate in the real problems we had to solve instead 
of looking for tiny details. 

After defining the tests conditions and writing them using the module 
Test::More, I created a web application using CGI::Application and a modified 
version of Test::Harness to be able to execute tests without forking a new 
process. This allows the application to execute tests concurrent in different 
DTS packages and generating a HTML result of the tests. 

The application is a bit too longer to mentioned every details of implementation 
of it here, but if the reader take some time of checking all methods calls, it's a 
very instructive way to learn how to move from one object to another till 
getting the desired property. 

These are the set of test executed with any DTS package passed as an 
argument: 

• check if the package it is not logging in the database server;  

• check if the logging to a flat file is enabled;  

• check if write completion status to Event Log is disable;  

• check if Global variable are explicit declared;  

• check if the package has at least two connections;  

• check if the package has at least one datapump;  

• check if the connections are setup automatically by using a Dynamic 
Property task;  

• check if the Execute Package tasks have the Package ID property 
empty;  

• check several properties of flat file connections;  

• check several properties of datapumps.  



The Best of SQLServerCentral.com – Vol.7 

158 
 

Since the web application is MVC based, it's possible to modify the tests 
executed without worrying about modifying the other components. 

The complete web application is included in the article and I intend to include it 
also in the PerlDTS project website. Be sure to read the README file to get 
the details about installing the web application in Apache 2.x and IIS. The web 
application has POD included when you install the available Perl modules with 
it. 

Performance 

With all this connect-to-server-and-fetch operations, it's valid to mention that a 
good practice is avoid using more than one DTS::Application in your program. 
Run the script benchmark.pl in the examples directory in the PerlDTS tarball to 
get an idea of speed difference. 

Documentation and project website 

PerlDTS project includes documentation in form of POD (exported to HTML 
as well) and UML diagrams. This documentation is complementary to the one 
provided by Microsoft SQL Server, not a substitute. It's necessary to use both 
for better understanding. 

The PerlDTS project website is located at http://code.google.com/p/perldts/. 

Implementation decisions and future of PerDTS 

Quoting the CAVEATS of DTS.pm module: 

"All objects under DTS distribution cannot be created without a reference 
to the original DTS object they mimic: at the current development state, 
object can only be recovered from a MS SQL Server database. Some 
classes may have methods to change their inner attributes, other classes 
don't. Check the POD for each class to be sure, but future releases should 
have write methods for all classes implemented". 

This means that each object instantiated will have a attribute called _sibling 
that holds a reference to a Win32::OLE object that is the exactly counterpart of 
the original DTS class it mimics. The PerlDTS project was initially developed 
to work as a "reporting" tool, not as a new way to create DTS packages. Since 

http://code.google.com/p/perldts/�


The Best of SQLServerCentral.com – Vol.7 

159 
 

only the properties values are necessary for reporting, usually it's a good idea to 
execute the method kill_sibling to remove the reference to the original object 
and release computer resources during the process. 

That said, if you want to create DTS packages in memory and on the fly, 
PerlDTS is not the project you're looking for. 

I would argue the need to do it anyway. Some tasks are done much easier in the 
DTS designer (like creating new connections) than using programming 
languages. On the other side, executing a package through Perl has lots of 
advantages, including for using better scheduling tools and better reports for 
errors during execution (check out DTS::Package::Step and 
DTS::Package::Step::Result classes). It is better to use what is good in DTS 
packages created in the DTS designer and leave the rest for your Perl scripting 
skills. Perl, for example, is much more powerful to execute any data 
transformation than DTS (just check out CPAN for ready to use code). 

There are a lot of work still be done in PerlDTS project (especially classes that 
don't have a Perl counterpart implemented). Any comment, suggestion or 
patches are much welcome! 

Loading Data with Powershell 
By Chad Miller 

From PowerShell you will inevitably want to load command and script output 
into a database. Let's look at three methods to you can use to load data into 
SQL Server from Powershell. 

Getting Started 

The examples in this article use the following Powershell script to extract disk 
space information. Save the Powershell code below to a file as Get-
DiskUsage.ps1: 

Note: this code is available at www.sqlservercentral.com 

You'll need to create the following table in your database to store the output: 

Note: this code is available at www.sqlservercentral.com 



The Best of SQLServerCentral.com – Vol.7 

160 
 

Note: This article uses C:\Users\u00\bin as the file path, Z002 as the computer 
name, Z002\SQLEXPRESS as the SQL instance and dbautility as the database. 
You'll need to change each item to suite your environment. Also note in 
PowerShell. / denotes the current directory, the examples presented assume 
both script and output are saved to the current directory from which you are 
executing the commands. 

Method 1: Export-CSV/BULK INSERT 

Powershell makes it very easy to create CSV files from any Powershell 
command/script by using the built-in cmdlet Export-CSV. For example, the 
following code executes the Get-DiskUsage.ps1 script against the computer 
named Z002, exports the results to a CSV using Export-CSV and as a result of -
noTypeInformation switch, omits the type information as part of the output : 

./get-diskusage.ps1 Z002 | export-CSV -path  ./diskusage.csv -
noTypeInformat   

Let's look at the of the diskusage.csv file . The output includes a header row 
with the property names and a row for each drive: 

UsageDT,SystemName,DeviceID,VolumeName,SizeGB,FreeGB,PercentFre
e 
2008-10-25,Z002,C:,LOCAL_120,111.79,24.95,22.32     

The output of Export-CSV can almost be imported as-is into SQL Server using 
the T-SQL command BUIK INSERT with one minor edit. Since a header row 
is included you will need to remove the first line which has the property names 
but not the actual data. The first line is removed in order to use the T-SQL 
BULK INSERT command without specifying a format file to skip the first line. 
Removing the first line is easy to do with Powershell. For example, the 
following command will read in the contents of the diskusag.csv file skipping 
the first line and write the output back to the diskusage.csv file: 

 (Get-Content ./diskusage.csv) | where {$_.readcount -gt 1} | 
Set-Content ./diskusage.csv   

The CSV file is ready to be imported into the SQL Server table created during 
setup. The following code uses the SQL Server command-line utility SQLCMD 
from PowerShell to execute the BULK INSERT command against the 
diskusage.csv file: 



The Best of SQLServerCentral.com – Vol.7 

161 
 

sqlcmd -S "Z002\SqlExpress" -E -Q "BULK INSERT 
dbautility.dbo.DiskUsage FROM 'C:\Users\u00\bin\diskusage.csv' 
  WITH (FIELDTERMINATOR = ',', ROWTERMINATOR = '\n')"   

Pros: Export-CSV/BULK INSERT is the simplest method and uses natively 
available cmdlets and utilities. This method is the fastest method in terms of 
load speed when dealing with large data sets. 

Cons: Requires file management when the solution may not require staging the 
data. Some editing of the CSV file produced by Export-CSV is required. 
Depending on the data you may need to perform additional edits including 
removing extra quote marks around strings and converting Boolean values from 
true/false to 0 or 1 representations. Some data may have commas in the output 
which can wreak havoc on any load routines. 

Recommendation: Use this method if your load process will benefit from 
staging the data in CSV files, when you are dealing with large data sets and 
when you know the data does not contain extra commas. 

Method 2: XML/XMLBulkLoad 

An additional setup task is required for this method, you'll need to download 
and install SQLXML. SQLXML 3.0 or 4.0 will work. It is difficult to find 
SQLXML on the Microsoft site so here is a link 
(http://www.microsoft.com/downloads/details.aspx?familyid=228de03f-3b5a-
428a-923f-58a033d316e1 
&displaylang=en&tm

The XML/SQLXMLBulkLoad method requires we convert the output to XML 
and generate an XSD schema file with SQLXML annotations 
(

) which will take you to the x86 SQLXML 4.0 SP1 install 
package download at the time of this writing. Note: SQLXML 4.0 is also 
available on the SQL 2005 installation CD, but is not installed by default. 

http://msdn.microsoft.com/en-us/library/ms172649(SQL.90).aspx). Both of 
these tasks can be accomplished using a the New-XML and New-XSD 
PowerShell scripts. The PowerShell Team blog 
(http://blogs.msdn.com/powershell/default.aspx) posted a function called New-
XML in this blog entry entitled Using PowerShell to Generate XML 
Documents (http://blogs.msdn.com/powershell/archive/2007/05/29/using-
powershell-to-generate-xml-documents.aspx). Copy the function to a text file 
called XML.ps1, save and source the function from PowerShell as follows: 

http://www.microsoft.com/downloads/details.aspx?familyid=228de03f-3b5a-428a-923f-58a033d316e1�
http://www.microsoft.com/downloads/details.aspx?familyid=228de03f-3b5a-428a-923f-58a033d316e1�


The Best of SQLServerCentral.com – Vol.7 

162 
 

. ./XML.ps1   

Note: When you source a function you are simply loading the definition of the 
function into your current Powershell session, but not executing the function. 
The notation is dot space dot forward slash. The New-Xsd script is available in 
the Resources section below. Save the file as New.Xsd.ps1. Now you are ready 
to create XML and XSD files. The following creates an XML file of the disk 
space information called diskusge.xml: 

./get-diskusage.ps1 Z002 | ./New-Xml -ItemTag DiskUsage -
Attribute   
UsageDT,SystemName,DeviceID -ChildItems Volu 
meName,SizeGB,FreeGB,PercentFree >   
diskusage.xml 

 
To create the XSD file you first need to assign our disk usage information to a 
the variable $du as shown below:: 

$du = ./get-diskusage.ps1 Z002   

 
Next run the following command from Powershell to create the XSD file 
diskusage.xsd: 

./New-Xsd.ps1 -Object $du -ItemTag DiskUsage –Attribute 
UsageDT,SystemName,DeviceID -ChildItems VolumeName,SizeGB,F 
reeGB,PercentFree >   
./diskusage.xsd   

Examine the XSD file produced by New-Xsd. Some properties may not be 
mapped to the desired SQL data type. For example UsageDT should be a 
datetime rather than a varchar(255). You'll need to manually change the data 
type in the XSD file to datetime as follows: 

  <xs:attribute name="UsageDT" sql:field="UsageDT" 
sql:datatype="datetime"/>    

 
Because the XSD file can be reused for importing data in the same format, the 
file only needs to be generated and manually edited once and finally to import 
the data into your SQL Server table. Run the following set of commands from 
Powershell: 



The Best of SQLServerCentral.com – Vol.7 

163 
 

$sqlxml = new-object -comobject "SQLXMLBulkLoad.SQLXMLBulkLoad"  
$sqlxml.ConnectionString = 
"provider=sqloledb;server=Z002\SQLEXPRESS;database=dbautility;I
ntegrated Security=SSPI" 
$sqlxml.SchemaGen = $true 
$sqlxml.Bulkload = $true  
$sqlxml.Execute("C:\Users\u00\bin\diskusage.xsd","C:\Users\u00\
bin\diskusage.xml")   

One of the benefits unique to this method of importing data is the option to 
automatically create the table if the table does not already exist by setting the 
SchemaGen property to true. 

Pros: The data is well-formed XML. No need to worry about editing data 
produced as long as the schema file is correct. Bulk loading of the XML file is 
very fast. The biggest benefit is the automatic creation of the table from the 
XSD schema definition. 

Cons: Some manual editing of the XSD schema file may be required. Does not 
validate input for possible escaping of invalid XML. The slowest of the three 
methods in terms of generating the XML file. Like the CSV method requires 
storing the data in an intermediate XML file when the solution may not need to 
be staged to a file. 

Recommendation: Use this method if the data is already in an XML format, or 
when your process will benefit from XML file storage or when you need to 
automatically create the tables. 

Method 3: DataTable/SQLBulkCopy 

ADO.NET and the various wrappers around ADO.NET including the SMO 
ExecuteWithResults method, SQLPSX (http://www.codeplex.com/SQLPSX) 
Get-SqlData and Microsoft SQL Server Powershell cmdlet Invoke-Sqlcmd will 
return a DataTable. But what about the times when the output of a Powershell 
command isn't a DataTable such as the DiskUsage.ps1 script? Well, not 
surprisingly it is fairly easy to take the output of any Powershell command and 
convert to a DataTable. Marc van Orsouw (/\/\o\/\/) in his ‘ThePowerShellGuy’ 
blog posted a function called Out-DataTable which will convert the output of 
any Powershell command to a DataTable 
((http://thepowershellguy.com/blogs/posh/archive/2007/01/21/powershell-gui-
scripblock-monitor-script. 
aspx). This method will use the function to convert the disk usage information 



The Best of SQLServerCentral.com – Vol.7 

164 
 

into a data table. Copy the function to a text file called DataTable.ps1, save and 
source the function from PowerShell as follows: 

. ./DataTable.ps1   

Note: As stated in Method 2, when you source a function you are simply 
loading the definition of the function into your current Powershell session, but 
not executing the function. The notation is dot space dot forward slash. Now 
you can use the Out-DataTable function with the DiskUsage.ps1 saving the 
output to a new variable called $dataTable: 

$dataTable = ./DiskUsage.ps1 Z002 | Out-DataTable   

Since the output of the Powershell command is saved as a DataTable you can 
use the .NET 2.0 class, SqlBulkCopy with a few simple lines of code to load 
the data into a SQL Server table: 

$connectionString = "Data Source=Z002\SqlExpress;Integrated 
Security=true;Initial 
Catalog=dbautility;" 
$bulkCopy = new-object ("Data.SqlClient.SqlBulkCopy") 
$connectionString  $bulkCopy.DestinationTableName = "DiskUsage"  
$bulkCopy.WriteToServer($dataTable)   

Pros: No intermediate file storage is required since everything is done in 
memory. Fastest when the data is already in a DataTable format. Not as 
complex as the XML method. For this example of loading disk space 
information, this method is the best solution. 

Cons: Some solutions may require an intermediate file storage. Slower than 
CSV method on very large data sets. 

Recommendation: This method is ideal for dealing with smaller result sets or 
when the data is already in DataTable format 

Conclusion 

This article demonstrated three methods you can use to import data from 
Powershell into SQL Server. These methods produce a CSV file, an XML/XSD 
file or DataTable from Powershell which can be imported into SQL Server. 
Using these techniques you can load any Powershell output into a SQL Server 
table. 



The Best of SQLServerCentral.com – Vol.7 

165 
 

Add Styles to Your Reporting Services 
Reports 
By Adam Aspin 

As a seasoned BI developer I am used to producing reports using many 
different tools, and have been a delighted user of Reporting Services for several 
years now. However, I must admit that I am not a design guru, and that I prefer 
spending my time on the queries and code rather than the presentation of the 
reports that I produce. So I inevitably find it both frustrating and pointlessly 
time-consuming when I am asked to reformat a report for the umpteenth time, 
as the new boss (or new analyst or helpful staff member) suggests a complete 
makeover of the reports that I have just worked half the night to produce to an 
already tight deadline. 

Sound familiar? Many of the BI people that I know have stories echoing these 
sentiments, and it got me thinking why are there no stylesheets in Reporting 
Services? Or at least why is there no easy way of reapplying style elements to a 
report or better still to a set of reports - without hours of painstaking effort? 
After all, HTML developers have CSS stylesheets, and ASP.NET developers 
have themes and skins, so what about us poor report developers? 

After some time reflecting on this question, I came up with a style-based 
approach that I hope will give other developers the tools to help them increase 
their productivity, while avoiding repetitive and laborious report refactoring. 
The techniques described in these three articles apply equally well to SQL 
Server 2005 as to SQL Server 2008. 

Let's be clear about this. It is impossible to duplicate in Reporting Services the 
functionality of ASP.Net themes or even Cascading Style Sheets. So what we 
are looking at is a simple and efficient way of changing the colour of cells, text 
and lines, as well as changing the thickness and type of borders instantly and 
globally for one or more reports, using a tagged, or named style approach. 

The first question is is it worth the effort to create an abstraction layer like this? 

Yes is the resounding answer for the following reasons: 

• Reformatting reports is extremely time-consuming.  



The Best of SQLServerCentral.com – Vol.7 

166 
 

• The BIDS report designer is extremely clunky, and will only let you 
reformat cells which are identical so you spend an unreasonable 
amount of time selecting individual cells to reformat.  

• Remembering and recognising colour codes (especially if you are using 
Hexadecimal or numeric codes like #990099) can be difficult.  

• Abstracting style definitions to a set of user-defined names is not only 
easier to apply, but forces the designer and creator to be more rational 
and organised in their approach.  

Assuming, then, that the effort of defining styles is worth the investment, let's 
begin with basic definitions. Firstly. by "Styles" I mean a synonym for a 
specific report attribute like colour or line weight; by "Stylesheet" I mean an 
organised collection of styles and their definitions. 

I will presume that the reader has basic knowledge of Reporting Services, and 
can create and format reports. Indeed, this article will not explain how to create 
reports, as the techniques described can be applied to any report. 

Using Reporting Services Embedded Code 

Let's start with the fastest way to apply styles to a Reporting Services report, 
using embedded code. For this example we will only set colour styles, in order 
to make the example simpler. 

The objective is to map the following styles to the following colours 

Style Name Colour 

Header Blue 

Footer Green 

BodyText Black 

Subtitle Dark Blue 

This is how you do it: 



The Best of SQLServerCentral.com – Vol.7 

167 
 

Defining Styles 

1. Open an existing report, or create a new report  

2. Access the embedded code of a report by clicking Report/Report 
Properties in the BIDS menu (you need to have selected either the Data 
or Layout tabs for this menu option to be available). You can then 
select the Code tab from the Report Properties dialog and paste or enter 
the following code.  

Function StyleColor(ByVal Style As String) As String 
        Select Case UCase(Style) 
            Case "HEADER" 
               Return "LightBlue" 
            Case "FOOTER" 
               Return "SkyBlue" 
            Case "MAINTITLE"  
               Return "Purple" 
            Case "SUBTITLE" 
               Return "DarkBlue" 
            Case Else 
               Return "White" 
          End Select 
      End Function   

You should have the following: 

  



The Best of SQLServerCentral.com – Vol.7 

168 
 

3. Click OK to close the dialog.  

As you can see, the code snippet consists of a single function, which rakes an 
input parameter (imaginatively named "Style") and returns the selected colour. 

The code itself is extremely simple, but what you have to grasp firmly is the 
concept here we are giving pseudonyms to colours, and consequently the 
naming convention that you use is important. After all the idea is to make life 
easier, not more complicated! The function that you create will use the style 
(the "pseudonym" used as an input parameter) to select and apply the correct 
colour. 

Applying Styles 

So how do you apply the styles? Simply replace the hard-coded reference to a 
colour (let's say to the title in our sample report) with the function you created 
in the Custom Code not forgetting to pass in the input parameter. This means: 

1. Click to select the object whose colour you wish to modify.  

2. Open or select the properties window (press F4 if necessary) and 
replace the current colour with the following: 
=code.StyleColor("Header")  

The result should be something like this: 

  

That is all. Simple, isn't it? All you need to do is prefix the function that you 
created with "code" (which tells Reporting Services to use the embedded code 
in the report), and pass in an appropriate style name. Note that the variable 
name is rendered case-insensitive through the UCase function if you do not use 
this function, you will need to make all style names case-sensitive. 



The Best of SQLServerCentral.com – Vol.7 

169 
 

You will then need to apply these steps to all elements to which you wish to 
apply a colour. This can be fonts, cell backgrounds or borders. It is worth 
noting that the code used to reference a colour can also be embedded in code so 
you can use it inside IIF or SWITCH structures also. 

When you next preview or run the report, the object's colour will switch to the 
colour defined by the style. 

"OK" you may be saying but isn't this harder work than just applying a hard-
coded colour? Well, yes it is until you need to change all the colours in a report. 
Then all you need to do is change the colour reference of a style in your custom 
code and the entire report will be altered when you next run it. You can try this 
by opening the at the Custom Code tab, and (for instance) altering the colour 
defined by the style you used. If you now preview the report, you will see the 
colour change wherever it has been applied. 

Of course, once you have a tried and tested style sheet in custom code, the code 
can be copied to all the reports you wish to standardize. This will ensure that 
the same colour scheme is applied to all the reports you format in this way. 

So what are the drawbacks to this approach? 

• Firstly, the main drawback is the limits of custom code creation and 
editing in BIDS. The custom code tab is a text box, there are no 
debugging tools, and it is not easy to read! You may find it easier to 
create the code in Visual Studio, or even in a text editor, and then copy 
and paste the code into BIDS.  

• Secondly, the custom code is limited to the report which contains it so 
any changes to the code have to be carried over to all reports using this 
code as a stylesheet. Admittedly this extremely "self-contained" aspect 
of custom code can also be perceived as an advantage there is nothing 
special that you have to do to deploy reports for this technique to work.  

• Thirdly, the difficulty of successfully creating multiple styles without 
bugs limits the number of styles that can be managed using this 
technique.  

• Fourthly it is not possible to define a style which encompasses all the 
attributes of an object. For instance a font has a font family, colour, 
size and weight (and this list is not exhaustive). You will have to define 
a style for each individual element, unfortunately, as this is a limitation 
of BIDS. However, as there is no limit to the number of functions that 



The Best of SQLServerCentral.com – Vol.7 

170 
 

you can add to the code tab in the Report properties dialog, there is 
nothing to stop you having different functions for each type of property 
that you wish to set dynamically.  

Tips 

One tip that you might find useful if, when updating an existing report to use 
styles, you want to replace all the occurrences of a colour in an existing report 
with the expression which uses the custom code, you can: 

1. Close the report in BIDS if it is already open.  

2. Right-click on the report in the Solution Explorer, and select "View 
Code"  

3. Click Edit/Find and Replace/Quick Replace.  

4. In the Search and Replace dialog enter "your colour" (the colour 
reference you wish to replace) in the Find field, 
and=code.StyleColor("Header")in the replace field (don't forget the 
equals sign).  

5. Click Replace All.  

6. Close the dialog.  

7. Save the file  

8. Reopen normally, in BIDS.  

This saves an immense amount of selecting and pasting. 

Another tip is always to use the Case Else in a Select Case possibly adding a 
peculiar colour completely outside your chosen colour palette for testing, as 
this will allow you to isolate elements to which you have erroneously attempted 
to apply stylesheet formatting more easily. By this I mean that if the colour that 
is used when an erroneous style parameter is passed into the code is violent 
purple, then you will see any styling errors far faster when building a report, 
than if you leave this as white! Of course, remember to reset this "default" 
colour to something innocuous before deploying reports to production. 

  



The Best of SQLServerCentral.com – Vol.7 

171 
 

Conclusion 

So now you know how to gain time and also standardise report presentation 
when developing Reporting Services reports using custom code stylesheets. 
The next article will explain how to extend the stylesheet paradigm to 
centralised style definitions using Custom Assemblies and interactive style 
definitions stored in SQL Server tables. 

Configuring Kerberos Authentication 
By Brian Kelley 

In my experience, configuring a SQL Server for Kerberos authentication, 
especially a SQL Server named instance, can be one of the most confusing 
things to do for a DBA or system administrator the first time around. The 
reason it can be so confusing is there are several "moving parts" that must all be 
in sync for Kerberos authentication to work. And what can make things all the 
more confusing is that in general, if we don't touch a thing, people and 
applications can connect to our database servers but as soon as we start down 
the road of configuring Kerberos authentication, they suddenly can't. And it can 
be rather frustrating to figure out why. In this article we'll look at both the hows 
and the whys. 

If I Don't Do Anything, Why Does it Usually Work? 

When it comes to authenticating a login (checking to see if you are who you 
say you are), SQL Server only does authentication when the login is a SQL 
Server based one. I've chosen my words carefully here, because it is important 
to understand that when it's a Windows-based login, SQL Server passes off the 
authentication to an operating system component, the Windows Security 
Support Provider Interface (SSPI). That's why when you have Kerberos 
authentication errors, you usually get some message about SSPI context. 
Basically, SQL Server realizes it's a Windows login, gets the information it'll 
need to pass on so SSPI can do it's checks, and then it waits to see what SSPI 
says. If SSPI says the login is good, SQL Server allows the login to complete 
the connection. If SSPI says the login is bad, SQL Server rejects the login and 
returns whatever error information SSPI provides. Now, there is one exception 
to SQL Server farming out Windows authentication to SSPI, but that occurs in 
Named Pipes and so we won't get into it because hopefully you're not using 
Named Pipes as your protocol. 



The Best of SQLServerCentral.com – Vol.7 

172 
 

Once we understand that SQL Server is handing off responsibility for 
authentication to SSPI, it's time to understand what SSPI is going to do. SSPI is 
going to first try and authenticate using Kerberos. This is the preferred protocol 
for Windows 2000 and above. In order to do this, there needs to be a Service 
Principal Name (SPN) in place. We'll talk more about that later. If there's no 
SPN, Kerberos can't happen. If Kerberos can't happen whether due to no SPN 
or another reason (across forests with no forest level trust), SSPI will drop back 
to the old security protocol, NT LAN Manager, or NTLM. So if we don't do 
anything, authentication will drop back to NTLM and everything tends to work. 
That is, until we have to do multiple "hops," like through SQL Server 
Reporting Services set up on a separate server or when we want to do Windows 
authentication across a linked server connection (see Figure 1). 

Figure 1: 

 

In Figure 1, the same set of credentials (Domain\User) is being passed from the 
client to a server and then from that server to a second server. Each time the 
credentials are passed, we call that a hop. Since we're not changing the 
credentials (for instance, we're not going to a second Windows account, such as 
a service account, or a SQL Server login, we say that there have been two hops, 
or what we call that a double hop situation. NTLM doesn't permit double hop 
situations (or triple or quadruple &); It is prevented by design. So in either of 
these particular scenarios, if we don't have Kerberos authentication set up, we 



The Best of SQLServerCentral.com – Vol.7 

173 
 

can't make the second hop. We'll see errors logging in attributed to login (null) 
or NT AUTHORITY\ANONYMOUS LOGON. By default, Kerberos 
authentication only permits a single hop, but using a feature called Kerberos 
delegation, multiple hops can be configured and these double hop scenarios can 
be allowed. While Kerberos delegation is beyond the scope of this article, it is 
important to note that Kerberos delegation cannot happen without Kerberos 
authentication, and that's how DBAs usually get pulled into the fray. 

What's So Bad About NTLM? 

In general, NTLM (or at least, the revised versions) do a good job of 
authenticating the user and basically being secure. However, NTLM suffers 
from the following drawbacks: 

• It is susceptible to "replay" attacks.  

• It assumes the server is trustworthy.  

• It requires more authentication traffic than Kerberos.  

• It doesn't provide for a means of going past that first hop.  

Let's look at each one of these to understand why they are drawbacks, starting 
with a replay attack. A replay attack is when an attacker is able to capture 
network traffic and re-use it. For instance, imagine I'm logging on to your SQL 
Server. An attacker has a packet sniffer and is able to capture that logon 
sequence. If, at a later point, that attacker could put that traffic back on the 
network and it work, that would be a replay attack. The classic example given 
is an attacker captures a bank transaction for some amount of money. Let's say 
you pay Mr. Attacker US$500 for services rendered. If the attacker can capture 
the network traffic and replay it multiple times, the bank will deduct US$500 
from your account each time and deposit it into his. To the bank, the repeated 
transactions looked legitimate (although admittedly, with everyone worried 
about fraud nowadays, we would hope this kind of thing gets flagged and 
checked out). If this is the case, then the protocol for that transaction we're 
using is to blame because it provided us no protection from such an attack. 
Such is the case with NTLM. It provides no protection. Kerberos, on the other 
hand, includes a time stamp of when the network traffic was sent. If you're 
outside the window of the acceptable time range (by default this is 5 minutes), 
Kerberos rejects that network traffic. So in the case above, imagine if the bank 
put a timestamp on the transaction and had an acceptable time range within 10 
seconds. If Mr. Attacker tried to replay the transaction after that 10 second 
window was up, the bank would know something was going on. 



The Best of SQLServerCentral.com – Vol.7 

174 
 

The second drawback with NTLM is that the server isn't verified. The client 
connects to MySQLServer. Or at least, it thinks it is connecting to 
MySQLServer. The NTLM protocol may have the ability to validate that 
Domain\User is connecting, but it doesn't allow Domain\User to verify that he 
or she is really talking to MySQLServer. This is where the Service Principal 
Name (SPN) comes into play. When the client attempts to connect via 
Kerberos, the SPN for the service being connected to is checked. In a Windows 
2000 or higher domain, the SPN is stored within Active Directory, and the 
Active Directory domain controller is trusted by the client. Therefore, if the 
service, such as a SQL Server service, checks out based on the SPN the client 
finds for that service within Active Directory, it knows that it can trust the 
server is truly MySQLServer. 

The third drawback is the amount of authentication traffic used by NTLM 
versus Kerberos. In NTLM, every time authentication happens, a check has to 
be made back to a domain controller (DC). With Kerberos, tickets are issued to 
both the client and the server containing the information each needs to validate 
the other. Therefore, the client and the server only have to check in with a 
domain controller once during the lifespan of those tickets (default is 600 
minutes or 10 hours) to get the tickets in the first place. After that, they both 
have the information they need without checking back with a DC. 

The final drawback is one we've already discussed, and that is situations where 
we want to make multiple hopes. Quite frankly, NTLM leaves us with no 
options. We have to make each hop different from the previous one, whether 
we like it or not. Kerberos delegation ensures we can pass the credentials 
through all the hops until we reach the final destination. 

What Is an SPN, Why Do I Need to Configure It, and How 
Do I Do So? 

A Service Principal Name (SPN) provides the information to the client about 
the service. Basically, each SPN consists of 3 or 4 pieces of information: 

• The type of service (for SQL Server it is called MSSQLSvc)  

• The name of the server  

• The port (if this needs to be specified)  

• The service account running the service.  



The Best of SQLServerCentral.com – Vol.7 

175 
 

All of these need to match up for the client to be able to validate the service. If 
any of these are wrong, Kerberos authentication won't happen. In some cases, 
we'll get that SSPI context error and in fact, SSPI won't even drop back to using 
NTLM, meaning we don't connect at all. Therefore, the key is to get everything 
correct when we set the SPN.  

In order to set an SPN, you must either be a Domain Admin level user or you 
must be the computer System account (or an account that talks on the network 
as the System account, such as the Network Service account). Typically, we 
advise that SQL Server should be run as a local or domain user, so that rules 
out the second case. We also advise that SQL Server shouldn't be a domain 
admin level account, and that rules out the first case. What this means is a 
domain admin level account will need to set the SPN manually. Thankfully, 
Microsoft provides a nice utility called SETSPN in the Support Tools on the 
OS CD/DVD to do so. It can also be downloaded from the Microsoft site.  

Using SETSPN 

SETSPN has three flags we're interested in: 

• -L : This lists the SPNs for a particular account  

• -A : This adds a new SPN  

• -D : This deletes an existing SPN  

The key to understanding SPNs is to realize they are tied to an account, 
whether that be a user or computer account. If we want to see what SPNs are 
listed for a particular account, here is the syntax: 

SETSPN -L <Account> 

For instance, if I have a server called MyWebServer, I can list the SPNs 
assigned to that computer account by: 

SETSPN -L MyWebServer 

If, instead, I am running my SQL Server under the 
MyDomain\MyServiceAccount user account, I can check the SPNs listed for 
that account by: 

SETSPN -L MyDomain\MyServiceAccount 



The Best of SQLServerCentral.com – Vol.7 

176 
 

To add an SPN, it's important that we know the service account SQL Server is 
running under. Also, it is important to know the TCP port SQL Server is 
listening on. If it's a default instance, the port by default is 1433, although this 
can be changed. If it's a named instance, unless we have gone in and manually 
set a static port, SQL Server could change the port at any time. Therefore, it's 
important to set a port statically. I've described how to do so in the blog post 
(http://www.sqlservercentral.com/blogs/brian_kelley/archive/2008/05/17/settin
g-static-ports-when-dealing-with-named-instances-and-kerberos.aspx

SETSPN -A MSSQLSvc/<SQL Server Name>:<port> <account> 

). Once 
we have those bits of information, we can add an SPN via the following syntax: 

If we're dealing with a default instance listening on port 1433, we can leave off 
the :<port> (but it is still a good idea to have an entry both with and without the 
port). One other thing to remember is it is important to specify SPNs for both 
the NetBIOS name (e.g. MySQLServer) as well as the fully qualified domain 
name (e.g. MySQLServer.mydomain.com). So applying this to a default 
instance on MyDBServer.mydomain.com running under the service account 
MyDomain\SQLServerService, we'd execute the following commands: 

SETSPN -A MSSQLSvc/MyDBServer MyDomain\SQLServerService 
SETSPN -A MSSQLSvc/MyDBServer:1433 
MyDomain\SQLServerService 
SETSPN -A MSSQLSvc/MyDBServer.mydomain.com 
MyDomain\SQLServerService 
SETSPN -A MSSQLSvc/MyDBServer.mydomain.com:1433 
MyDomain\SQLServerService 

For a named instance, we typically only require two commands, because there 
isn't a case where a client is just connecting to the name of the server. For 
instance, let's assume we have a named instance called Instance2 listening on 
port 4444 on that same server using that same service account. In that case we'd 
execute the following commands: 

SETSPN -A MSSQLSvc/MyDBServer:4444 
MyDomain\SQLServerService 
SETSPN -A MSSQLSvc/MyDBServer.mydomain.com:4444 
MyDomain\SQLServerService 



The Best of SQLServerCentral.com – Vol.7 

177 
 

And in those rare cases where we need to delete an SPN (for instance, we 
change the service account or switch ports), we can use the -D switch. It's 
syntax is parallel to the -A switch: 

SETSPN -D MSSQLSvc/<SQL Server Name>:<port> <account> 

I've Done All of That. How Can I Verify Logins Are 
Connecting Via Kerberos? 

Within SQL Server there is a very simple query we can execute to determine 
what type of authentication was performed on each connection. Here's the 
query: 

SELECT   
    s.session_id  
  , c.connect_time  
  , s.login_time  
  , s.login_name  
  , c.protocol_type  
  , c.auth_scheme  
  , s.HOST_NAME  
  , s.program_name  
FROM sys.dm_exec_sessions s  
  JOIN sys.dm_exec_connections c  
    ON s.session_id = c.session_id 

The query returns a lot of information to help you identify the connections. The 
connect_time and login_time should be pretty close together and it gives you a 
window of when the initial connection was made. The login_name, along with 
host_name and program_name, help you identify the exact login. From there 
the protocol_type helps you narrow down the connection if you have different 
endpoints for your SQL Server other than just TSQL (for instance, mirroring or 
HTTP). And finally, the auth_scheme will reveal, for a Windows account, what 
security protocol was used. If Kerberos authentication was successful, you 
should see the auth_scheme reflect Kerberos instead of NTLM. 

Use Operations Manager to Monitor 
Your SQL Agent Jobs 
By Thomas LaRock 



The Best of SQLServerCentral.com – Vol.7 

178 
 

I have long been an advocate of Operations Manager, having used MOM 2005 
and now Operations Manager 2007. With both versions I have been content 
with the out-of-the-box functionality, and Operations Manager has plenty to be 
excited about. Some of the functionality is there but not enabled by default, so 
you have to hunt it down. One item of interest to most would be the ability to 
effectively monitor SQL Agent jobs. 

I am not talking about simply getting an email notification when a job fails. No, 
I am talking about more in depth information such as job duration and last run 
status. Both of those items are included in the SQL Management Packs (both 
2000 and 2005). 

In the custom Database State view I created in a previous article, I had columns 
for the SQL Agent. If I clicked on one of them, the details view would be 
displayed as in Figure 1. I would see the Agent in a healthy state, and four open 
circles under the Availability, Configuration, Performance, and Security 
columns. I started to wonder about why the circles are empty, and then I 
noticed the words Not Monitored. So, I set about trying to find out how to get 
those items to be monitored. 

 

Figure 1 

The first step is to configure the object discovery for SQL Agent jobs. This can 
be done by going to the authoring tab and clicking on the Object Discoveries 
item as shown in Figure 2. 

 

Figure 2 

Your scope will need to include the SQL 2000 Agent Job and/or the SQL 2005 
Agent Job targets. You should now see the following in Figure 3. 



The Best of SQLServerCentral.com – Vol.7 

179 
 

 

Figure 3 

These discoveries are disabled by default and you will need to manually 
override the discoveries. In our case, we did an override for our custom group 
of database servers. But what does this discovery do for us? Well, it gathers 
info about every job within SQL Agent by using the monitors already defined. 
You can see the monitors by clicking on the Monitors item on the Authoring 
tab, right above the Object Discoveries item as shown in Figure 2. 

After selecting the Monitors item you should see Figure 4, where I have 
expanded the monitor for the SQL 2005 Agent Job target which is identical to 
the SQL 2000 Agent Job target. You will notice that there are only two 
monitors in total, one named Last Run Status as part of the Availability rollup 
and another named Job Duration as part of the Performance rollup. 

 

Figure 4 

If you were to go back to your database state view and examine the details view 
for one of the SQL Agents you should see the following (Figure 5). 

 

Figure 5 



The Best of SQLServerCentral.com – Vol.7 

180 
 

So, we have gone from four unmonitored items to only two, as Security and 
Configuration do not have any monitors associated with them by default. Now, 
after all that work, what is the end result? 

If you were to double click on the line item shown in the detail view in Figure 
5, you would open up the Health monitor for the SQL Server Agent (Figure 6). 
You can then expand the Availability and/or the Performance monitors and 
quickly see all of the jobs in SQL Agent for that instance. So, if a job had 
failed, or if a job had run too long, then you would be able to quickly see which 
job had the issue. 

 

Figure 6 

As good as this information may be I should point out the default settings for 
job duration is 60 seconds for a warning threshold and 120 seconds for an error. 
I am not certain about how your shop operates, but our shop uses SQL Agent 
jobs to do database dumps, and quite often those dumps take longer than two 
minutes. So, when I started enabling this functionality a while back I was 
alarmed to see a lot of jobs being flagged as critical. As a result, I set an 



The Best of SQLServerCentral.com – Vol.7 

181 
 

override for the job duration monitor to have thresholds of 3600 and 5400 
seconds as the lower and upper bounds for all jobs. 

After some investigation I found that the override will not work for the SQL 
2000 Agent Job Duration monitor, as that monitor does a compare to the 
duration taken from the msdb database, which is in the format of HHMMSS. 
This means that if your job runs for one hour, forty seven minutes and sixteen 
seconds, the msdb stores that as 14716. This number is converted to a proper 
format when you examine the job history through SSMS, but Operations 
Manager does a compare to the 14716 as if that was the duration in seconds. 
So, if you set an override to 7200 seconds (two hours) as an error threshold, 
you would be as surprised as I was that a job would be flagged as critical. But, 
7200 is less than 14716, right? No, not exactly, so you will need to override 
your SQL 2000 Agent Jobs differently than your SQL 2005 Agent Jobs. For 
me, I used 10000 as the lower threshold and 13000 as the upper threshold of 
my SQL 2000 Agent Jobs, and eliminated a lot of false alarms. 

Operations Manager has the ability to monitor additional details with regards to 
your SQL Agent jobs, you just need to take a few extra steps in order to start 
collecting some valuable information. And while it may not be perfect, it is still 
better overall than most in-house solutions. I find the console easy to use and 
by shifting our team to rely on the use of Operations Manager we are freeing up 
valuable time to spend on other projects. 

Oracle for the SQL Server Guy - 
Instances and Databases 
By Jagan Kumar 

Introduction 

It is quite common nowadays to see DBAs supporting databases from different 
vendors. Although much is common between database products, there are also 
many differences that can be a challenge for a DBA or a database developer 
who is new to a particular database product. 

The purpose of this article series is to present Oracle 10g features from a SQL 
Server 2005 stand point. 



The Best of SQLServerCentral.com – Vol.7 

182 
 

In this article, I introduce you to the concept of Instance and Database which is 
a key term in understanding RDBMS architecture. Like anything you build, be 
it a nest of Taj Mahal, the foundation is the key. 

Instance and Database 

In Oracle, processes (background processes) and memory allocated make up an 
instance. 

Database refers to the physical files(.dbf and .log etc). Having a database is not 
necessary to run an instance. If the instance is not part of parallel server 
configuration (Real Application Clusters) the relationship between an instance 
and a database is always 1:1. The main properties of an Oracle instance are 
specified using the initialization parameter file (pfile or spfile). When the 
instance is started, the parameter file is read and the instance is configured 
accordingly. 

 

Having a database is not necessary to run an Oracle instance. 

In SQL Server, an instance refers to processes, memory allocated and physical 
files associated with default system databases used by that particular 
installation. By default SQL server installation comes with a set of system 
databases (with its own hierarchy of objects and settings). 



The Best of SQLServerCentral.com – Vol.7 

183 
 

 

In SQL Server, the settings for the instance are stored in the registry, 
master/resource database and msdb database. 

To an Oracle DBA, creating a database means creating an entire database 
system that contains control files, redo logs and, data dictionary and 
tablespaces. In the coming section, we will discuss what these objects are and 
how they are mapped to the SQL Server equivalents. 

 

In SQL Server, these tasks are accomplished as part of the installation process. 
Hence creating a database in SQL Server implies adding a user database to the 
already existing system databases. 

One SQL Server instance can hold more than one user defined database and the 
instance and database ratio is 1..32767. 



The Best of SQLServerCentral.com – Vol.7 

184 
 

 

Oracle storage architecture encompasses: 

1. Data File: Similar to SQL Server, data file is an operating system file to 
store objects and data. One or more data files are logically grouped 
together to make a tablespace. One data file is associated with only one 
tablespace. Unlike SQL Server, there are no Primary/Secondary data 
file types in Oracle.  

2. Redo Log: The Redo Log is similar to Log File in SQL Server. Oracle 
writes all final changes made to data first to the redo log files before 
applying the changes to data files. The set of redo log files that are 
currently being used to record the changes to the database are called 
online redo log files. These logs can be archived or copied to a 
different location before being reused and the saved logs are called 
archived redo logs. Archive Log Mode setting similar to Recovery 
Model setting in SQL Server decides whether the Redo Logs need to be 
archived or overwritten for reuse.  

3. Tablespace: A Tablespace is a set of one or more data files. The SQL 
Server equivalent of the tablespace is the filegroup. While filegroups 
are similar in function, their organization differs from that of 
tablespaces. Oracle tablespaces are at the instance level. SQL Server 
filegroups come under and are associated with the individual databases. 
There are three types of tablespaces:  



The Best of SQLServerCentral.com – Vol.7 

185 
 

a)Permanent tablespaces 
b)Undo tablespaces 
c)Temporary tablespaces 

In SQL Server, file groups are of two types, primary and secondary. System 
wide tablespaces in Oracle include, 

System Tablespace (Permanent): The System tablespace stores 
the data dictionary for the instance/database, which is some 
what equivalent to the master/resource database in SQL Server.  

Sysaux Tablespace (Permanent): The Sysaux tablespace stores 
all auxiliary database meta data related to options and features 
such as RMAN, Job Scheduling, AWR repository, etc. Sysaux 
tablespace can be roughly equated to the msdb database in 
SQL Server.  

Temp Tablespace (Temporary): The Temp tablespace contain 
data that persists only for the duration of a user's session. 
Oracle uses Temp tablespace as a sort work area and for join 
operations involving internal work tables. Similar to Tempdb 
database in SQL Server.  

Undo Tablespace (Undo): An Oracle database has a method of 
managing information that is used to roll back, or undo, 
changes to the database. The information consists of records of 
the actions of transactions, primarily before they are 
committed. Undo records provide read consistency (avoiding 
reader-writer blocking scenarios) by maintaining the before 
image of the data for users who are accessing the data at the 
same time another user is changing it. 
 
There are major differences in the way Undo is managed in 
SQL Server. UNDO management is implemented in SQL 
Server as part of the transaction logs of each database which 
handle both redo and undo related functions.  

4. Control File - The Control file is a file that Oracle maintains to manage 
the state of the database. Every database has at least one control file or 
multiple identical copies. The control file contains the names and 
locations of the data files, redo log files, backup set details and SCN. In 



The Best of SQLServerCentral.com – Vol.7 

186 
 

SQL Server, the master/resource database has some of the information 
that is stored in the control file of an Oracle database.  

Oracle Schema 

The objects that a user owns are collectively called schema. A schema is bound 
to exactly one user. A SQL Server database has the features of an Oracle 
scheme because objects are created inside the database. 

In Oracle, the schema and tablespace have independent identities objects of a 
schema can be created in different tablespaces, and a single tablespace can 
contain objects from multiple schemas. In this context, SQL Server databases 
are similar to Oracle tablespaces an owner can create objects in different 
databases, and a database can contain objects from different schemas. 

Summary 

Oracle’s functional equivalents in SQLServer 

Oracle SQL Server 

System tablespace Master/Resource database 

Sysaux tablespace MSDB database 

Database template files(Data warehouse, 
General purpose, Transaction processing) 

Model database 

Undo tablespace Tempdb 
Database/Transaction Log 

Temp tablespace Tempdb 

Redo Log Transaction Log 

Schema/User Schema, Not a User 

 



The Best of SQLServerCentral.com – Vol.7 

187 
 

Default trace - A Beginner's Guide 
By Adam Haines 

We have all been subject to or know someone who has been in a situation 
where an object has been altered/created/deleted, without our knowledge, and 
the application comes to a screeching halt. After fixing the problem, your boss 
asks you some questions, like what happened, why did it happen, and who did 
it. SQL Server 2005 introduced a new type of trigger called a DDL trigger that 
can provide all the answers we need; however, you did not get a chance to 
implement this functionality. So... what do you do?  

Some would tell their boss "I do not know, but I can find out" and then search 
franticly for 3rd party tools to read the transaction log, hoping for instantaneous 
salvation. What these few do not know is an answer is silently running in the 
background. SQL Server 2005 has built in functionality that gives 
administrators the answers to all these questions.  

The answers lie in a new background trace called the default trace. The default 
trace is exactly what the name specifies, a trace. Default trace is always running 
in the background of your instance capturing events that administrators can use 
to troubleshoot problems. The default trace is enabled by default and does not 
burden the system because it is fairly lightweight. Chances are you had not 
even noticed this trace running on your instance. To those concerned about 
overhead, yes there is overhead, but in my mind the benefits far outweigh the 
minimal overhead. The default trace is not intended to replace DDL trigger 
functionality and should be used as a means to monitor an SQL Instance, or 
quickly obtain detailed information about problematic events. 

The default trace does not capture all trace events, but captures enough 
information to become a powerful tool in your toolkit. The default trace 
captures key information including auditing events, database events, error 
events, full text events, object creation, object deletion and object alteration. 
From my experiences and observations on forums, I will be focusing on object 
level events. It seems that a greater number of people want the "who done it" 
answer for object DDL events. 

The first piece of code is to check the default trace to see if it is enabled. 

SELECT * FROM sys.configurations WHERE configuration_id = 1568   



The Best of SQLServerCentral.com – Vol.7 

188 
 

If this feature is not available, you will have to configure the advanced option 
"default trace enabled". Below is the code to enable the trace. Note: you will 
need the ALTER SETTNGS permission or be in the sysadmin or serveradmin 
fixed server role to reconfigure. 

sp_configure 'show advanced options', 1; 
GO 
RECONFIGURE; 
GO 
sp_configure 'default trace enabled', 1; 
GO 
RECONFIGURE; 
GO   

The next piece of information we need is the default trace file path, and the 
function below will return the current trace file. You can grab the initial trace 
file (log.trc) and rollup every trace file into a single table, but there is a higher 
overhead associated to bringing more data in. You should use the trace file that 
best represents the information you are looking for. 

Note: the path is defaulted to the \MSSQL\LOG directory, but we can use the 
function below to get the path 

--get the current trace rollover file 
SELECT * FROM ::fn_trace_getinfo(0)   

Now that we have all the information we need we can get into the trace data. 
Let's start by creating a new database call TraceDB. 

USE [master] 
GO 
CREATE DATABASE TraceDB   

Now open the trace file, as shown below. As you can see, we were able to 
gather some pretty significant information about who created the database and 
when the database was created. I have used category id of 5 and a 
trace_event_id of 46 to filter the data correctly. Event ID 46 represents 
Object:Created and category 5 is objects. I will provide queries that list all 
events and categories at the end of this article. 

** Make sure to use your trace file path below. Yours may be different than 
mine. 



The Best of SQLServerCentral.com – Vol.7 

189 
 

  SELECT  
     loginname, 
     loginsid, 
     spid, 
     hostname, 
     applicationname, 
     servername, 
     databasename, 
     objectName, 
     e.category_id, 
     cat.name as [CategoryName], 
     textdata, 
     starttime, 
     eventclass, 
     eventsubclass,--0=begin,1=commit 
     e.name as EventName 
FROM ::fn_trace_gettable('C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\LOG\log.trc',0) 
     INNER JOIN sys.trace_events e 
          ON eventclass = trace_event_id 
     INNER JOIN sys.trace_categories AS cat 
          ON e.category_id = cat.category_id 
WHERE databasename = 'TraceDB' AND 
      objectname IS NULL AND --filter by objectname 
      e.category_id = 5 AND --category 5 is objects 
      e.trace_event_id = 46  
      --trace_event_id: 46=Create Obj,47=Drop Obj,164=Alter Obj   

• You will see more than one entry per object create because these 
objects have two event sub classes -begin and commit. Each subclass 
will have an entry.  

• You can remove the databasename filter to get object creation events 
for all databases.  

Results (Trimmed for Simplicity): 

 

Now, we have seen what default trace is capable of. Let's create another object 
and repeat the query. This time around we are going to create a table called 
"MyTable". Use the following code to create the table. 



The Best of SQLServerCentral.com – Vol.7 

190 
 

USE [TraceDB] 
GO  CREATE TABLE [dbo].[MyTable]( 
 [id] [int] IDENTITY(1,1) NOT NULL, 
 [sometext] [char](3) NULL 
) ON [PRIMARY]   

Now query the default trace using the same query as above. Note you can use 
the ObjectName column to filter for the specific object you are looking for; 
otherwise all created database objects are returned. 

  WHERE databasename = 'TraceDB' AND 
      objectname = 'MyTable' AND --filter by objectname 
      e.category_id = 5 AND --category 5 is objects 
      e.trace_event_id = 46 
      --trace_event_id: 46=Create Obj,47=Drop Obj,164=Alter Obj   

Results (Trimmed for Simplicity): 

 

Let's take the demo a step further by altering MyTable. Issue an alter table 
statement and add a new column to MyTable, as shown below. 

USE [TraceDB] 
GO 
ALTER TABLE MyTable 
ADD col INT   

We can now search trace information on the alter event for MyTable. We can 
use the same query as before but need to make a small modification. You must 
change the trace_event_id to 164 because event 164 represents the 
object:Altered event. 

  WHERE databasename = 'TraceDB' AND 
      objectname = 'MyTable' AND --filter by objectname 
      e.category_id = 5 AND --category 5 is objects 
      e.trace_event_id = 164  
      --trace_event_id: 46=Create Obj,47=Drop Obj,164=Alter Obj   

Results (Trimmed for Simplicity): 



The Best of SQLServerCentral.com – Vol.7 

191 
 

 

Now lets drop MyTable and view the trace details. You must change the 
trace_event_id to 47 because event 47 represents the object:Deleted event, as 
shown below. 

  USE [TraceDB]  GO    DROP TABLE MyTable   

We can view trace data by changing the trace_event_id to 47. 

  WHERE databasename = 'TraceDB' AND 
      objectname = 'MyTable' AND --filter by objectname 
      e.category_id = 5 AND --category 5 is objects 
      e.trace_event_id = 47  
      --trace_event_id: 46=Create Obj,47=Drop Obj,164=Alter Obj   

Results (Trimmed for Simplicity): 

 

As you can see, default trace gives an administrator the ability to find the 
history of any DDL transaction. I want to point out that default trace is not 
limited to object DDL history. Among other things, default trace captures log 
growth events, which can be invaluable to troubleshooting disk capacity 
problems.  

For example, say your log file spontaneous grows enormous. It is important to 
understand why the log grew spontaneously. No one would argue that one of 
the first place to look may be SQL Jobs. There are many commands within a 
job that can potentially cause the log to grow enormous, like reindexing, bulk 
inserts, bulk deletes etc. By using the trace data you can more easily identify 
the problem because you can pin-point the exact time the log file began to 
grow. This greatly reduces the number of possible suspects, which reduces the 
amount of time required to find the culprit. 



The Best of SQLServerCentral.com – Vol.7 

192 
 

The query below will pull all trace data using the log auto growth event. Note: 
You will not have any log growth for TraceDb because we have not done in 
large inserts to make the log grow. You should apply this query to another 
database where you want to monitor log growth. 

   
SELECT  
     loginname, 
     loginsid, 
     spid, 
     hostname, 
     applicationname, 
     servername, 
     databasename, 
     objectName, 
     e.category_id, 
     cat.name, 
     textdata, 
     starttime, 
     endtime, 
     duration, 
     eventclass, 
     eventsubclass, 
     e.name as EventName 
FROM ::fn_trace_gettable('C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\LOG\log.trc',0) 
     INNER JOIN sys.trace_events e 
          ON eventclass = trace_event_id 
     INNER JOIN sys.trace_categories AS cat 
          ON e.category_id = cat.category_id 
WHERE databasename = 'TraceDB' AND 
      e.category_id = 2 AND --category 2 is database 
      e.trace_event_id = 93 --93=Log File Auto Grow   

Summary: 

The default trace is a valuable tool for the modern DBA's tool belt. It offers a 
wealth of information, while minimally impacting the system. The default trace 
is not a widely publicized feature of SQL Server 2005, but is slowly gaining 
fame. The default trace gives administrators the ability to get detailed 
information about auditing events, database events, error events, full text 
events, object creation, object deletion and object alteration events. With this 
much information at their fingertips, administrators are more productive and 
can more easily identify problems in a production environment. My 
recommendations are to look through the events and see what information 
already exists for your instances. Default trace should not only be used 



The Best of SQLServerCentral.com – Vol.7 

193 
 

reactively but proactively. A proactive mentality will reveal small problems 
before they escalate to bigger problems. 

Event and Category Queries 

  --list of events  
SELECT * 
FROM sys.trace_events   

 

  --list of categories  
SELECT * 
FROM sys.trace_categories   

 

  --list of subclass values 
SELECT * 
FROM sys.trace_subclass_values   

 

--Get trace Event Columns 
SELECT  
     t.EventID, 
     t.ColumnID, 
     e.name AS Event_Descr, 
     c.name AS Column_Descr 
FROM ::fn_trace_geteventinfo(1) t 
     INNER JOIN sys.trace_events e  
          ON t.eventID = e.trace_event_id 
     INNER JOIN sys.trace_columns c  
          ON t.columnid = c.trace_column_id   

References: 

List of available events: 

How to enable default trace: 

http://blogs.technet.com/vipulshah/archive/2007/04/16/default-trace-in-sql-
server-2005.aspx 

http://msdn.microsoft.com/en-us/library/ms175513(SQL.90).aspx 

http://blogs.technet.com/vipulshah/archive/2007/04/16/default-trace-in-sql-server-2005.aspx�
http://blogs.technet.com/vipulshah/archive/2007/04/16/default-trace-in-sql-server-2005.aspx�
http://msdn.microsoft.com/en-us/library/ms175513(SQL.90).aspx�


The Best of SQLServerCentral.com – Vol.7 

194 
 

Streaming Data into SQL Server 2008 
from an Application 
By Solomon Rutzky 

Prelude to a Test 

There are many new and coolio features in Microsoft SQL Server 2008 (such 
as FINALLY being able to initialize a variable when you declare it) and the 
term "streaming" has been thrown around quite a bit. Nearly all of the articles 
that include the word "streaming" are referring to the FILESTREAM feature of 
storing BLOB data on the filesystem. This article, however, is NOT about the 
FILESTREAM feature (which is fine because there are plenty of those 
already). Instead this article is about using Table-Valued Parameters (TVPs) to 
stream data from an application into the database. 

Many articles have been written to cover the basic topic of what Table-Valued 
Parameters are and how to use them to pass data between Stored Procedures so 
I will not go into that here. What I am going to focus on is using TVPs to pass 
data from an application to the database. Now there are two ways of passing 
data to a TVP: sending the data all at once and streaming the data as you 
receive it. The first way -- sending all of the data at once -- is a topic that has 
been covered in a few articles but I will include it here for completeness and to 
compare it with the fully-streamed method. The streaming method is mentioned 
in a few places but I have not been able to find any articles about it, most likely 
due to it not being applicable as often as sending all of the data at once. In fact, 
the only example of it that I have seen -- and which I used as a reference for 
this article -- was a session at the SQL PASS 2008 conference presented by 
Himanshu Vasishth (see References section for details). 

The Typical Method 

Prior to SQL Server 2008 the only way to send data to the database was to send 
it in one row at a time. So we have all created the basic Insert, Update, and 
Delete Stored Procedures that accept a single row's data to work on. Of course 
for the Delete operations some people pass in a comma-separated list and split 
it out in the database using a User-Defined Function, but that doesn't work for 
Insert and Update. If there is only one row to operate on then there really is no 
issue of efficiency. But often enough we have a set of data that we want to 



The Best of SQLServerCentral.com – Vol.7 

195 
 

work with at one time. Whether we are creating a matching set of data (e.g. 
creating a single Order Header record and several Order Detail records 
associated with it) or loading a set of data (e.g. data import or maybe persisting 
a .Net Grid View), we are forced to iterate over that set of data. And in the case 
of the Header / Detail situation, you have to create the Header record first and 
then create the Detail records based on the ID of the Header record. All of these 
calls add up in terms of network traffic and the length of time of the operation 
contributes to blocking if a transaction was opened by the application; if a 
transaction was not opened by the application then each statement is its own 
transaction which is a greater load on the server as compared to bulk / multi-
statement operations. The only benefit here is that if you are importing a large 
dataset from disk or another source you can load each row into memory as you 
need it and hence consume a low amount of memory. But this benefit doesn't 
provide any efficiency in terms of time that it takes to perform the operation. 

The Newer And Awesomer Method 

Starting in SQL Server 2008 is the ability to pass real datasets to Stored 
Procedures using Table-Valued Parameters (TVPs). TVPs allow you to pass in 
a strongly-typed collection of data (i.e. a table). So now we can make a single 
call to the database to pass in all relevant records. This cuts down on network 
traffic and allows us to both combine operations such as the Order Header and 
Order Details into a single call as well as making use of multi-row DML 
operations which are much more efficient than iterative statements. In most 
cases this method will consume the same amount of memory as the iterative 
method since you will likely have the data collected to send to the database at 
that moment. The difference here is that you can make a single call to the 
database to send it all in which is both a cleaning programming model as well 
as an order of magnitude faster, especially as you work with larger sets of data. 
The only down-side here is that if you are importing a large dataset from disk 
or another source you do not have the ability to read that data in as you pass it 
to the database and hence an operation might consume too much memory 
before you get a chance to send it all at once to the database. 

The Double-Plus Good Method 

So the feature that is either not mentioned or is only alluded to but never shown 
(same as with this article so far ;-)) is the ability to not only send all of the data 
at once to a TVP (and gain the efficiency of a single network call with a multi-
statement operation) but to also keep the memory footprint low. That's right, by 
doing a little extra work (not too much) you can stream an entire set of data to 



The Best of SQLServerCentral.com – Vol.7 

196 
 

SQL Server 2008 as it is being read into your application. To be fair, this 
method does not really offer any benefit over the standard TVP approach (using 
a DataTable) if you already have all of the data in memory and there is no way 
to get it in small chunks. However, for those operations that require loading 
large sets of data that are being read from disk, a Web Service call, a query 
result from another database, etc., this method allows you to start passing the 
data to SQL Server as you receive it. This allows you to get the low-memory 
benefit of the iterative method plus the network and database efficiency benefit 
of the basic TVP method. 

But wait, there's more! Well, no there isn't. But now we can get to the technical 
details (i.e. the fun stuff). 

Test Overview 

The example code that is shown below (and attached to this article at the 
bottom in the "Resources" section) is a single C# file (a Console Application) 
that covers four different methods: 

1. The "old school" (option = old) method of importing a text file 
iteratively by calling a Stored Procedure that accepts parameters for 
each of the columns,  

2. The "standard TVP" (option = normal) method of importing the text 
file entirely and then calling the TVP-based Stored Procedure once to 
Insert the data by passing in a DataTable,  

3. The "half-streaming" (option = half) method of reading all of the data 
into memory (same as the "standard TVP" method) but then calling the 
TVP-based Stored Procedure once while streaming the data from the 
DataTable using IEnumerable, and  

4. The "full-streaming" (option = full) method of reading the data one 
record at a time from the text file and streaming each record to the 
TVP-based Stored Procedure in a single call by using IEnumerable  

I have also attached the compiled .exe file of the code so that you don't need to 
compile this yourself if you want to run the same test. Just rename the file to 
end in .exe instead of .ex_ so that it runs. 



The Best of SQLServerCentral.com – Vol.7 

197 
 

Please note that I fully realize that the example code below is not 100% 
optimized in that there are a few places where I repeat blocks of code. This is 
by design since the purpose of this code is to be educational and I wanted to 
make it clear for people to see each of the four methods and the code required 
for each method without confusing the issue for people who might not be used 
to reading C#. 

Note: this code is available at www.sqlservercentral.com 

The sample data that I used was a 3 million row text file that consists of two 
columns: an INT that increments from 1 to 3,000,000 and a VARCHAR(50) 
which is just a GUID for the sake of simple variety. I generated the data (133 
Megs of it) using two SQL# (http://www.SQLsharp.com/) functions in a single 
statement as follows (yes, there are two lines but the first is just setup): 

EXEC SQL#.SQLsharp_SetSecurity 2 -- this is needed to write to the disk 
EXEC SQL#.DB_BulkExport 'SELECT IntVal, NEWID() FROM 
SQL#.Util_GenerateInts(1, 3000000, 1)', '', 0, 0, 'Word', 0, 0, 
'C:\SampleData3M.txt', NULL, NULL, 'ASCII' 

There are other ways to create sample data but this was easy and took 30 
seconds but did require that the process running SQL Server had write access to 
C:\ (but on my laptop it was not an issue). 

For the database side of things I did the following: 

1. Created a new database called "Test"  

2. Set the recovery model to: SIMPLE  

3. Set the data file to 500 Megs and the Log file to 1.1 Gigs since we don't 
want the import time to be skewed by filegrowth operations which 
won't be consistent between tests  

4. ran the following (also attached to this article):  

Note: this code is available at www.sqlservercentral.com 

Test Results 

I ran my test in following environment: 

http://www.sqlsharp.com/�


The Best of SQLServerCentral.com – Vol.7 

198 
 

• SQL Server 2008 (10.0.1600.22) Developer Edition  

• Windows XP Professional, SP3  

• Intel Core 2 Duo 2.4 Ghz with 2 Gigs RAM  

• 5400 RPM SATA HD (it's a laptop)  

 Method Time (avg.) Memory (avg.) 
Old School 34 minutes Low (but still sucks at 34 

minutes) 
Normal / Standard 
TVP 

41 seconds (22.8 to the 
DB) 

660 megs 

Half-Streaming 42 seconds (24.6 to the 
DB) 

660 megs 

Full-Streaming 23.3 seconds 40 megs 
BCP 21 seconds 70 megs 

Please note that the test result times are fully inclusive of reading the data from 
disk, which for all but the Full-Streaming method is typically 18 seconds. 
However, in the test code the number of seconds displayed after the Stored 
Proc is called is only showing what it takes to pass the data to the database and 
does not include any time needed to read the data from disk, except in the case 
of the Full Streaming method since you cannot separate the reading from the 
sending in that case. Also, the max CPU usage in all cases hovered between 
65% and 75%. 

From these results we can see that any usage of TVPs over the old method is an 
order of magnitude faster than doing things iteratively; about 50 times faster 
assuming 40 seconds for the TVP method. Deciding between the DataTable 
method and the IEnumerable method (fully streamed) depends on whether or 
not you have all of the data before calling the Stored Procedure or if you can 
manage to gather the data incrementally. The tests do show that if you have no 
choice but to collect all of the data first, then using the half-streamed method 
(IEnumerable) is actually a little slower than using the simpler DataTable 
method. However, there is no comparison for speed and efficiency (low 
memory usage) for the fully streamed method when you have the opportunity 
to get the data incrementally. 

Also please note that one downside of using TVPs is the usage of the Log file. 
For these tests the log file grew to just over 1 Gig even though the data being 
imported was only 130 Megs. Hence my stating before the tests that I had set 



The Best of SQLServerCentral.com – Vol.7 

199 
 

the Log File to 1.1 Gigs so that I would not have to worry about file growth. 
And when looking at the file usage (when doing a "shrink file" so that I could 
re-test with another method to see if it behaved similarly) only 40% of the log 
file was in use after each test was over and only 2% after doing a 
CHECKPOINT. This, however, is an acceptable situation given the speed and 
low memory usage. 

Notes 

• When using the DataTable method, the TVP parameter(s) need to have 
two options set:  

TypeName: this needs to be the name of the Table Type  
SqlDbType: this needs to be set to SqlDbType.Structured  
Value: this needs to be a variable of type DataTable  

• Using the DataTable method (standard) grows the log file much larger 
than expected.  

• In ADO.Net you can use a DbDataReader or an 
IEnumerable<SqlDataRecord> interface to stream the data directly to a 
Stored Procedure using a Table-Valued Parameter. Streaming outside 
of ADO.Net can be accomplished via ODBC using the data-at-
execution paradigm or via OLE DB using a custom IRowset 
implementation.  

• When using the IEnumerable<SqlDataRecord> method, you need to do 
the following:  

o Create a Class that implements IEnumerable<SqlDataRecord>  
o That Class needs to have at least three methods:  

 A constructor which is the Class name and any input 
parameters  

 The method that contains the logic to incrementally 
read in the data and that has the following signature: 
public IEnumerator<SqlDataRecord> 
GetEnumerator(). This method should have a loop 
that will pass back the data with the following 
statement: yield return DataRecordVariable;  

 And this one, exactly as it is here: 
IEnumerator IEnumerable.GetEnumerator() 
{ 



The Best of SQLServerCentral.com – Vol.7 

200 
 

return GetEnumerator(); 
}  

o ProcParameter.TypeName: this needs to be the name of the 
Table Type  

o ProcParameter.SqlDbType: this needs to be set to 
SqlDbType.Structured  

o ProcParameter.Value: new instance of your IEnumerable Class 
name  

• Large datasets that are inserted directly (i.e. not transformed) will 
likely be faster via T-SQL BULK INSERT, bcp.exe, or the SqlBulkCopy 
object in .Net but otherwise this method would be faster. Small 
datasets would be similarly efficient between Bulk Insert and this 
streaming method even for straight inserts.  

Conclusion 

As we have seen, the new Table-Valued Parameter feature of SQL Server 2008 
allows us to pass in data to the database from an application in a much more 
efficient manner than iteratively calling a Stored Procedure to operate on one 
row at a time. The only draw-back to the basic / common implementation of 
using a TVP (i.e. using the DataTable method) is that you need to have all of 
the data in memory before you execute the Procedure. There is, however, a way 
to keep the memory footprint of your operation low by fully streaming the data 
to SQL Server 2008 by reading it incrementally and passing it to a Table-
Valued Parameter via a Class that implements the IEnumerable interface. For 
situations that deal with large volumes of data, making use of the IEnumerable 
interface can get you both benefits of the blazing efficiency of a single call to a 
Stored Procedure with the low-memory utilization of the typical incremental 
method. And while BULK INSERT and/or BCP might be slightly faster with 
large volumes of data that are inserted as-is, an import doing any amount of 
transformation of the data would be much faster using the TVP / IEnumerable 
combination. 

References 

• SQL PASS 2008 in November, "Optimizing Bulk Operations Involving 
Data Cleansing and Merging with Table-Valued Parameters", Session 
AD-302-M (26:14 - 42:10), Himanshu Vasishth, Program Manager of 
ADO.NET  



The Best of SQLServerCentral.com – Vol.7 

201 
 

• Table-Valued Parameters (Database Engine): 
http://msdn.microsoft.com/en-us/library/bb510489.aspx  

• Table-Valued Parameters in SQL Server 2008 (ADO.NET): 

Copyright © April 2009 by Solomon Rutzky 

http://msdn.microsoft.com/en-us/library/bb675163.aspx  

SQL Server 2008 and Data Compression 
By Nicholas Cain 

One of the large advantages of migrating up to SQL Server 2008 is the ability 
to compress your data, reducing your disk overhead. It is a relatively simple 
process to compress your data. 

Unfortunately from a production standpoint it is only available on the SQL 
Server 2008 Enterprise Edition (as per http://msdn.microsoft.com/en-
us/library/cc645993.aspx), it can however also be used on the Developer 
Edition (http://www.microsoft.com/sqlserver/2008/en/us/developer.aspx) 

The reduction in I/O required to pull data can lead to significant performance 
improvements, particularly in data warehouse and data mart environments 
where you are working with extremely large datasets. 

What is Data Compression 

Data compression is exactly what is says it is. It is a way of compressing the 
data within your database so that you can reduce greatly the amount of storage 
space required to host the data. There is a caveat with this, depending upon the 
amount of stored data within a table, the allocation unit size of your disk and 
the datatypes you could in fact end up using MORE storage 

Note: Allocation Unit Size (AUS) is also known as the cluster or blocksize of 
your disk. This size is set when you format your disk and can range in size 
from 512 Bytes to 64 KB. The default AUS is based upon the size of the disk, 
see http://support.microsoft.com/kb/140365 for more information. Larger file 
allocations will provide performance improvements for applications such as 
SQL Server, particularly the 64 KB AUS. The size of a SQL Server extent (8 
pages) is 64 KB, and so optimizes performance. The downside of a larger AUS 

http://msdn.microsoft.com/en-us/library/bb510489.aspx�
http://msdn.microsoft.com/en-us/library/bb675163.aspx�
http://msdn.microsoft.com/en-us/library/cc645993.aspx�
http://msdn.microsoft.com/en-us/library/cc645993.aspx�
http://www.microsoft.com/sqlserver/2008/en/us/developer.aspx�
http://support.microsoft.com/kb/140365�


The Best of SQLServerCentral.com – Vol.7 

202 
 

is that is takes a great deal more space to hold a file on the disk, so if you have 
a lot of smaller files you could end up using a far more disk space than you 
need to as the disk has to allocate 64 KB of space for even a 2 KB file. If you 
are curious about the existing AUS on your partitions Microsoft have published 
a technet article with a script to show the partition properties 
http://www.microsoft.com/technet/scriptcenter/guide/sas_fsd_grsi.mspx?mfr=tr
ue 

There are two types of data compression: 

• Row compression  

• Page compression  

Row level compression will provide savings by not storing blank characters 
within fixed character strings (such as a char(10) with a 5 character value). Null 
and 0 values are not stored and so do not incur additional storage overhead. For 
a list of data types that support row level compression see 

Page compression uses a far more complex algorithm to minimize the storage 
space of data, known as dictionary compression. SQL Server looks at all of the 
data stored on a page and builds a dictionary based upon that data which can be 
referenced for repeated values, and only the dictionary id and changes of the 
dictionary value are stored. This provides great savings for similar patterned 
data. For full details on page level compression and how it works visit 

http://msdn.microsoft.com/en-us/library/cc280576.aspx. 

http://msdn.microsoft.com/en-us/library/cc280464.aspx. Page compression 
includesrow compression, so you get the benefit of both. 

Potential Issues with Data Compression 

Data compression is not for everybody. Depending upon the workload of your 
system, the performance requirements, and whether or not you use encryption 
this might not be the thing for you. There is a CPU overhead associated with 
using data compression, and this may adversely impact your system. High 
volume OLTP systems could be significantly impacted by attempting to 
implement data compression. 

  

http://www.microsoft.com/technet/scriptcenter/guide/sas_fsd_grsi.mspx?mfr=true�
http://www.microsoft.com/technet/scriptcenter/guide/sas_fsd_grsi.mspx?mfr=true�
http://msdn.microsoft.com/en-us/library/cc280576.aspx�
http://msdn.microsoft.com/en-us/library/cc280464.aspx�


The Best of SQLServerCentral.com – Vol.7 

203 
 

How Do I know if Data Compression is Right for Me? 

• Estimate the potential storage savings that you could get by 
implementing (you could actually end up using MORE storage within 
certain circumstances)  

• Complete a baseline performance analysis of your database server and 
reproduce this in a development or staging environment. Enable 
compression and evaluate the performance against that baseline.  

• Look at which tables can provide you the biggest benefit. I have found 
that an audit table I have will actually use 75% savings in disk space 
with no impact to the application on top of the database. Tables which 
have a lot of repetitive or numerical data or CHAR columns that are 
not fully populated are usually excellent candidates for compression.  

• Check and recheck your analysis against the baseline, and seek 
feedback from the users if you do implement it in a production 
environment.  

How Do I know if a Table is Worth Compressing? 

There is a stored procedure in SQL Server 2008 called 
sp_estimate_data_compression_savings. This procedure accepts 5 parameters. 

1. @schema_name 

2. @object_name 

3. @index_id 

4. @partition_number 

5. @data_compression 

The two critical parameters are @object_name and @data_compression. 

The object name refers to the table that you wish to evaluate and 
@data_compression can have one of three values (NONE, ROW, PAGE). 
Depending upon the value passed this will perform estimations for the two 
compression types and strangely for no compression. 

The additional parameters provide some more advanced estimation options. 
@schema_name allows you to estimate the savings against tables on a different 



The Best of SQLServerCentral.com – Vol.7 

204 
 

schema (by default the procedure only looks at tables within your own 
schema). @index_id will allow you to specify the estimated savings for a single 
index on a table based upon the index id, left with the default value of NULL it 
will assess all of the indexes on that table. @partition_number will allow you to 
define particular partitions on a table to evaluate potential savings. This can be 
very useful for estimating the savings on older data, rarely changed living on a 
partition, which you may want to compress as opposed to more volatile data 
within a different partition which may not be a good candidate for compression. 
Worth noting, you have to define an index id in order to evaluate a partition. 

Estimating Savings for Entire Databases 

It is obviously a time consuming task to go through each and every table an get 
an estimation of the potential savings you could find, which I why I created a 
procedure USP_Compression_Savings_By_DB (atttached to this article), 
which will go out and provide the estimated compression savings for all tables 
within a single database, or within all databases and load that information into a 
table for later analysis. 

The procedure can be created in the database of your choice and the final 
analysis table located in another database of your choice. It accepts two 
parameters, both of which are optional. 

• @checkdb this is the name of the database that we will be checking, if 
left null then all databases will be checked and the savings estimated  

• @admindbname should you wish to put the results into a particular 
database you can put a value here, by default it will use the database in 
which the procedure resides  

PLEASE NOTE: The sp_estimate_data_compression_savings procedure is a 
bit of a heavy hitter, and obviously with checking all tables in a database (or on 
an instance) using USP_Compression_Savings_By_DB, your system will be hit 
all the harder. I would recommend running this against a recent dump of your 
production databases restored on to another system. At the very least run it 
during the period of least activity on your system. 

Final Thoughts 

Compression can be a very useful tool and can provide huge benefits in not 
only storage but performance in heavy read applications. 



The Best of SQLServerCentral.com – Vol.7 

205 
 

Ensure to perform all of the analysis required to prevent your production 
systems from being negatively impacted by enabling data compression. 

The code for usp_compression_savings_by_db is included in the Resource 
section below. 

The FILESTREAM Data Type in SQL 
Server 2008 
By Deepa Gheewala 

Introduction 

It has been a challenge to maintain files, documents along with the records in 
the database and gradually increasing the need of digitizing the data leads to the 
need for a more manageable system. Once a photographer asked me for a 
system that can manage all his customer data and the associated video clips, 
photos, etc. that go with each customer. Also he needed to maintain data for his 
associates and wanted a system that would be very efficient system to maintain 
and, more importantly, would allow the data to be easily backed up. 

Much of the data that is created by the photographer above is unstructured data, 
such as text documents, images, and videos. This unstructured data is often 
stored outside the database, separate from its customer record which is 
structured data. Due to this separation it can lead to data management 
complexities in areas such as transactional consistency and database backups. 
Transactional consistency means if record gets updated, all parts of the record 
are updated. Backup for files and the database need to be done separately OR 
some external application has to manage the backup of both the storage 
systems. Well you might think if we can use the data type BOLB of SQL 
SERVER which allows us to store data upto 2 GB. But the problem with this is 
that file streaming becomes slow and performance of the database can be 
affected very badly. 

SQL Server 2008 introduces a new data type: FILESTREAM. FILESTREAM 
allows large binary data (Documents, images, videos etc) to be stored directly 
in the Windows file system. This binary data remains an integral part of the 
database and maintains transactional consistency. FILESTREAM enables the 
storage of large binary data, traditionally managed by the database, to be stored 



The Best of SQLServerCentral.com – Vol.7 

206 
 

outside the database as individual files that can be accessed using an NTFS 
streaming API. Using the NTFS streaming APIs allows efficient performance 
of common file operations while providing all of the rich database services, 
including security and backup. 

What is FILESTREAM? 

FILESTREAM is a new datatype in SQL SERVER 2008. To use 
FILESTREAM, a database needs to contain a FILESTREAM filegroup and a 
table which contains a varbinary(max) column with the FILESTREAM 
attribute set. This causes the Database Engine to store all data for that column 
in the file system, but not in the database file. A FILESTREAM filegroup is a 
special folder that contains file system directories known as data containers. 
These data containers are the interface between Database Engine storage and 
file system storage through which files in these data containers are maintained 
by Database Engine. 

What FILESTREAM does? 

By creating a FILESTREAM filegroup and setting a FILESTREAM attribute 
on the column of a table, a data container is created which will take care of 
DML statements. 

FILESTREAM will use Windows API for streaming the files so that files can 
be accessed faster. Also instead of using SQL SERVER cache it will use 
Windows cache for caching the files accessed. 

When you use FILESTREAM storage, consider the following: 

• When a table contains a FILESTREAM column, each row must have a 
unique row ID.  

• FILESTREAM data containers cannot be nested.  

• When you are using failover clustering, the FILESTREAM filegroups 
must be on shared disk resources.  

• FILESTREAM filegroups can be on compressed volumes.  

How to use FILESTREAM 

Step 1) Enabling FILESTREAM datatype 



The Best of SQLServerCentral.com – Vol.7 

207 
 

Before using FILESTREAM we need to enable it as FILESTREAM is by 
default disabled in SQL SERVER 2008. Enabling the instance for 
FILESTREAM is done by using the system store procedure 
sp_FILESTREAM_configure . The syntax is given as below: 

   USE MASTER  
GO 
 EXEC sp_FILESTREAM_configure @enable_level = 3   

There are various enable levels: 

0 - Disable FILESTREAM 

1 - Allow T-SQL only to access files 

2 - Allow T-SQL as well File system access Locally 

3 - Allow T-SQL as well File system access Locally as well as 
remotely 

OR  

Same thing can be done by setting the property of FILESTREAM i.e. 
Configurable level = Transact-SQL and file system 

 

Fig 1: Configure FILESTREAM 

STEP 2) Creating File Group 



The Best of SQLServerCentral.com – Vol.7 

208 
 

Now let us create a filegroup. As discussed earlier Filegroup is like a folder 
which acts as an interface between Windows file system and SQL server. 

USE MASTER 
GO 
CREATE DATABASE TEST_DB ON PRIMARY 
( NAME = TEST_DB_data,   
FILENAME = N C:\ TEST_DB_data.mdf ), 
FILEGROUP FG_1 
( NAME = TEST_DB_REGULAR,   
FILENAME = N C:\ TEST_DB_data_1.ndf ), 
FILEGROUP FG_2 CONTAINS FILESTREAM 
( NAME = FS_FILESTREAM, 
FILENAME = N C:\TEST_FS ) 
LOG ON 
( NAME = FS_LOG, 
FILENAME 
= N C:\TEST_FS_log.ldf ); 
GO   

The statement below means that a FileGroup of type FILESTREAM will be 
created i.e. a data container named TEST_FS is created, which will act as an 
interface between Database Engine and Windows file system. The Database 
Engine can manage the files through this folder. It is necessary to specify the 
CONTAINS FILEGROUP clause for least one filegroup. 

FILEGROUP FG_2 CONTAINS FILESTREAM 

Note: 
The only difference in the statement above compared to a normal 
CREATE DATABASE statement is the filegroup creation for 
FILESTREAM objects. 
There should not be any folder by the name TEST_FS as it will be 
created by SQL SERVER and permission will be granted. If the 
database is deleted then SQL SERVER will delete the related files 
and folders. 
Please note that if you try to create this database by specifying a 
path for the FILESTREAM files that is not on NTFS, you will get 
the error message: The path specified by d:\TEST_FS cannot be 
used for FILESTREAM files because it is not on NTFS.  

Below is the figure that shows the folder that is created after execution of above 
DDL statement 



The Best of SQLServerCentral.com – Vol.7 

209 
 

 

Fig 2: Special Filegroup folder created. 

For the FILESTREAM filegroup, the FILENAME refers to the path and not to 
the actual file name. It creates that particular folder - from the example above, 
it created the C:\TEST_FS folder on the filesystem. And that folder now 
contains a FILESTREAM.hdr file and also a folder $FSLOG folder. 

Important Note: The FILESTREAM.hdr file is an important system file. It 
contains FILESTREAM header information. Do not remove or modify this file. 

Adding FILESTREAM filegroup to existing database 

If you already have a database, you can add a FILESTREAM filegroup to it 
using ALTER DATABASE command. 

ALTER DATABASE [TEST_DB] 
         ADD FILEGROUP FG_2 CONTAINS FILESTREAM;   
ALTER DATABASE [TEST_DB] 
         ADD FILE 
                  (NAME = FS_FILESTREAM,FILENAME = N' 
C:\TEST_FS 
         ) TO FILEGROUP FG_2;   

Step 3) Creating a Table 

Once the database is ready we need a table having a column of Varbinary(max) 
with FILESTREAM attribute where the data will be stored. Let us create a 
table and add data into it. 

USE TEST_DB 
GO 



The Best of SQLServerCentral.com – Vol.7 

210 
 

CREATE TABLE FILETABLE 
( 
ID     INT IDENTITY, 
GUID    UNIQUEIDENTIFIER ROWGUIDCOL NOTNULL UNIQUE, 
DATA     VARBINARY(MAX) FILESTREAM   
);   

The table definition needs a ROWGUIDCOL column - this is required by 
FILESTREAM. The actual data is stored in the 3rd column DATA. Any data 
manipulation in this column will update the file stored in the Windows system. 

INSERT INTO FILETABLE (GUID, DATA) VALUES (NEWID(),NULL); 
INSERT INTO FILETABLE (GUID, DATA) VALUES (NEWID(),CAST( TEST 
DATA  AS VARBINARY(MAX)));   

Note: File will not be created for the data value NULL. 

Execute select query on the table - FILETABLE, and you get the following 
output. 

ID GUID DATA 
 
1 78909DBF-7B26-4CA9-A840-4D45930F7523 NULL 
2 0B0F5833-1997-4C9C-A9A7-F2536D68CFED 
04D592044554D4D592054455354 

As you can see on the file system, additional folders have been created under 
TEST_FS folder. The filename will be the GUID id. For eg. If you see the 
second record, the filename will be 0B0F5833-1997-4C9C-A9A7-
F2536D68CFED and in the DATA column the contents of file are stored.  

When to use FILESTREAM? 

When applications need to store large files i.e. larger than 1 MB and also don t 
want to affect database performance in reading the data, the use of 
FILESTREAM will provide a better solution. Also one can use this for 
developing applications that use a middle tier for application logic. 

For smaller files, still one can safely store in columns with datatype 
varbinary(max) BLOBs in the database which would provide better streaming 
performance for small files. 



The Best of SQLServerCentral.com – Vol.7 

211 
 

Advantages 

FILESTREAM enables the database to store un-structured (files, documents, 
images, videos etc) data on the file systems and still use the SQL SERVER 
Engine. 

It uses Windows API s for streaming the files. 

When manipulating files, instead of using the SQL server cache, it uses 
Windows system cache. 

SQL Server backup and recovery models support these files also along with the 
database. Only a single backup command is issued to back up the database and 
the FILESTREAM data. 

All insert, update, delete, search queries will also work for this unstructured 
data. 

FILESTREAM data is secured by granting permissions at the table or column 
level, similar to the manner in which any other data is secured. Only if you 
have permissions to the FILESTREAM column in a table, you can access its 
associated files. 

In SQL Server, FILESTREAM data is secured just like other data is secured: 
by granting permissions at the table or column levels. If a user has permission 
to the FILESTREAM column in a table, the user can open the associated files. 

Disadvantages 

FILESTREAM does not currently support in-place updates. Therefore an 
update to a column with the FILESTREAM attribute is implemented by 
creating a new zero-byte file, which then has the entire new data value written 
to it. When the update is committed, the file pointer is then changed to point to 
the new file, leaving the old file to be deleted at garbage collection time. This 
happens at a checkpoint for simple recovery, and at a backup or log backup. 

Limitations 

Database mirroring cannot be configured on databases with FILESTEAM data. 



The Best of SQLServerCentral.com – Vol.7 

212 
 

Database snapshots are not supported for FILESTEAM data. 

Native encryption is not possible by SQL SERVER for FILESTREAM data. 

Conclusion 

This article has explained about the new FILESTREAM datatype of SQL 
SERVER 2008 which provides easy way to maintain unstructured data along 
with the structured data as it uses Windows API to store files and manages the 
data into SQL SERVER database. As explained in the article FILESTREAM is 
easy to understand and implement in applications. 

Investigating the new Spatial Types in 
SQL Server 2008 - Part 1  
By Bennie Haelen 

In this post we take a look at the new spatial data type support in SQL server 
2008. First, I will make a case for why you would want to integrate spatial 
support in your applications. Next we will take a look at the two core spatial 
data types in SQL Server: the Geometry and Geography types. We will explain 
when to use each type, and we will take a look at the main application domains 
for the two types. 

The spatial types are implemented as CLR types in the database engine. Since 
some database folks might be unfamiliar with CLR types, we will make a brief 
detour into SQL Server and CLR types. We will talk about the differences 
between static and instance methods, and explain the TSQL calling notation for 
each. 

Both the Geometry and the Geography types are really just the top-level types 
of a rich object hierarchy. We will take a detailed look at the different classes in 
this hierarchy, and we will explore the methods and properties of each class by 
means of a number of TSQL scripts. A part of this exploration we will take a 
look at the three data formats that can be used to represent the spatial types: the 
SQL Server-native Well-Know-Binary (WKB) format, and the OGC 
(http://www.opengeospatial.org/) standard data types: the Well-Known-Text 
(WKT) and the Geography Markup Language (GML - 



The Best of SQLServerCentral.com – Vol.7 

213 
 

http://en.wikipedia.org/wiki/Geography_Markup_Language

As always, a picture is worth a thousand words, and nowhere this is more the 
case as for spatial information. Therefore, I will use both the "Spatial Results" 
tab in SQL server and a number of third-party rendering tools such as 
SpatialViewer (

). We will use 
TSQL scripts for each object to illustrate the different notations. 

http://www.codeplex.com/SpatialViewer) and GeoQuery 
(http://www.conceptdevelopment.net/ 
Database/Geoquery/) to present a spatial query result. 

After we have a good understanding of the spatial data types, we will put them 
to some practical use. We will use Virtual Earth to create applications in which 
we create mashups of Spatial data with a variety of business data. A large 
volume of GIS data is available on the public domain (some good sources are 
the US Census (http://www.census.gov/) and USGS (http://www.usgs.gov/) 
Web sites), but the format of this data is typically not compatible with SQL 
Server. Therefore, as part of this series we will create a library that will enable 
us to convert the "traditional" formats into a SQL Server 2008-compatible 
format. 

The above abstract covers a wide variety of formats, therefore I am planing to 
spread out this article over a number of different posts. This first post will 
cover the need for spatial support in our applications, the basics of the 
Geometry and Geography data types and a quick OO primer. 

Why Spatial Data? 

These days it is hard to find any data that DOES NOT have a spatial aspect. A 
number of applications attempt to answer questions like the following: 

1. Where are my customers located?  

2. What cities have the highest accident rates?  

3. What Florida counties have the highest flood risk? (OK, that one's easy 
to answer: "All of them"!)  

As GPS devices become more prevalent, more and more data is geo-tagged. 
For example, a lot of modern mobile phones have both a camera and a GPS 
chip build in. 
 
While the above applications use spatial data only as part of their overall data 

http://www.codeplex.com/SpatialViewer�
http://www.conceptdevelopment.net/Database/Geoquery/�
http://www.conceptdevelopment.net/Database/Geoquery/�
http://www.census.gov/�
http://www.usgs.gov/�


The Best of SQLServerCentral.com – Vol.7 

214 
 

set, there are a number of applications that use mapping and spatial data as their 
primary output: 

1. Consumer products such as Microsoft's Virtual Earth or Google maps.  

2. The government publishes the census results as spatial data.  

3. Utilities use mapping tools such as ESRI Server to plot the layout of 
electrical grid lines or underground gas lines.  

While the above examples are pretty self-evident, spatial data also plays an 
import role in applications that we might not think about right away: 

• When a warehousing application generates a pallet "pick run", it will 
use geospatial information to calculate the most optimal route.  

• When an interior architect uses a CAD tool such as AutoDesk to 
perform modeling of an interior space, he/she is using spatial data quite 
extensively.  

• Computer-aided manufacturing tools use spatial data to layout out parts 
on a piece of sheet metal.  

• The program in a municipal kiosk uses spatial data and geometric 
algorithms to predict the arrival times of buses and trains.  

• A multi-player computer game use spatial coordinates to keep track of 
the current locations of all game participants.  

From the above discussion it is clear that a large number of application have a 
need to work with spatial data. Some common requirements for spatial data 
support are: 

• The ability to store spatial coordinates directly in the database, 
preferably in the same tables as its associated data.  

• The data types used for this spatial data should go beyond simple point 
coordinates. Most geospatial data consists out of a mixture of points, 
lines (both single-segment and multi segment), and closed shapes 
(typically referred to as polygons in the literature).  

• The ability to perform a multitude of operations on this geospatial data. 
For example, a chip design application might want to assure that 
certain routes on a chip do not cross, other applications will have a 
need to calculate the area of a complex polygon etc.  



The Best of SQLServerCentral.com – Vol.7 

215 
 

In the next section will take a look at how SQL Server 2008 addresses the 
above requirements. 

Spatial Data Support in SQL Server 2008 

Types of Spatial Data: 

At the highest level, we recognize two major classes of spatial data: 

• Vector Data. Vector data is data expressed by a set of vertices and 
their relationship to one another. Common spatial features represented 
by vector data include:  

Points.  
Lines (where a line can have one or more segments)  
Polygons. Polygons are typically used to represent areas and 
regions.  

• Raster Data. Raster data is data expressed as a matrix of cells. We 
typically recognize raster data as images. Within a spatial or GIS 
context, we see raster data manifested as:  

Satellite images.  
The Virtual Earth bird's eye images.  
Google "street level" images.  

An example of each type of spatial data is shown below: 

 
 



The Best of SQLServerCentral.com – Vol.7 

216 
 

SQL Server 2008 does focus exclusively on Spatial Vector data. 

The SQL Server 2008 Spatial Data Types 

SQL Server 2008 introduces two new data types: 

1. Geometry. The geometry data type is based on the Cartesian 
coordinate system, based upon a "flat earth" representation model. In 
this model, a point is represented by an X, Y and optionally a Z 
coordinate. This usage domain of this data type is either:  

The representation of simple coordinates in a two or three 
dimensional space. A example is the precise location of a pallet 
in a warehouse.  
The representation of map coordinates, where distances are 
limited enough so that they are not affected by the round earth 
model.  

2. Geography. The geography data point can store points, lines, polygon 
and collections of each of these, using a "round earth" model as 
opposed to the "flat earth" model used by the Geometry data type. 
Instead of using X and Y coordinates, the geography data type will use 
a latitude/longitude combination to represent a single point. Most of the 
GIS data available on the Web is latitude/longitude based, so the 
Geography data type is the data type you should used in most of you 
GIS applications, especially when you are dealing with longer 
distances where the shape of the earth becomes relevant.  

  

Sample Raster Image (a sample satellite 
heat map) 

Sample Vector (in this case a simple 
line vector) 



The Best of SQLServerCentral.com – Vol.7 

217 
 

Geometry : Cartesian coordinate system, 
"flat earth" model 

Geography: Latitude/longitude 
coordinates, "round earth" model 

 

 

The geometry data type conforms to the Open Geospatial Consortium (OGC) 
Simple features for SQL specification version 1.1.0. 
(http://www.opengeospatial.org/standards/sfa). The OGC is a non-profit, 
voluntary consensus standards organization which is the leading consortium 
when it comes to the drafting and ratification of standards for geospatial and 
location based services. One of the standards published by the OGC is the 
Well-Know-Text specification (WKT - http://en.wikipedia.org/wiki/Well-
known_text

CLR Objects in the Database Engine and the Database 
Developer 

) for spatial data types. We will investigate this format in detail in 
part 2 of the series. 

Both the geometry and geography data types are implemented as user-defined 
types (UDT's) in the database engine. These UDT's are implemented as .NET 
Common Language Runtime (CLR) types. Before we take a more detailed look 
how to use these types, it is important that we make sure that the reader is 
familiar with some basic OO principles. If you are already familiar with object-
orientation and .NET types, please feel free to skip ahead to the next part in this 
series. 



The Best of SQLServerCentral.com – Vol.7 

218 
 

The core abstraction in the object-oriented world is the class. A class can be 
seen as the blueprint for a particular type. From this blueprint, a client can 
create any number of actual object instances. A class hides away its 
implementation details behind a set of publicly accessible properties and 
methods. This principle is called encapsulation or information hiding. For 
example, a Car class will encapsulate the behavior of an automobile. It might 
expose methods such as Start, Stop, SlowDown and SpeedUp, and it might 
provide properties such as CurrentSpeed and DaysTillNextOilChange. The Car 
class will hide the details of how it executes these methods and exposes these 
properties, enabling the client to be "blissfully unaware" of the implementation 
details of the Car class. 

Classes can be related to one another. At a high-level we can recognize the 
following types of relationships: 

The "has-a" relationship. For example, a Car class might have a SteeringWheel 
and a GasTank. This type of relationship is sometimes referred to as a "uses" 
relationship, for example the Car class "uses" the SteeringWheel class and 
"uses" the GasTank class.  

The "is-a" relationship. To stay with our Car example, a SportsCar is a 
specialized type of Car, which is specially equipped. It might have a Spoiler, a 
HighPerformanceEngine etc.. When classes have such a relationship they will 
use an OOP concept called inheritance to implement this relationship. In an 
inheritance implementation, the class from which we inherit is called the base 
class and the more specialized class is called the sub class. The sub class gets 
all of the functionality of the base class "for free", so it only needs to worry 
about implementing it own specialized behavior on top of the functionality of 
the base class. For example, the SportsCar class only implements the additional 
functionality that makes it a sports car.  

An example of a "uses" ("has a") and an inheritance ("is a") relationship is 
shown in the figure below: 



The Best of SQLServerCentral.com – Vol.7 

219 
 

 

Some base classes only define a general abstract concepts or entities. These 
types of classes cannot be directly instantiated by the client, since they are not 
"feature complete". Such a class is called an abstract class. The features defined 
by an abstract class are implemented by a sub class of the abstract class. Such a 
sub class that can be instantiated is called a concrete class. We will see in the 
next section that the geometry and geography classes are indeed defined as 
abstract classes in the database engine. 

In the next part of this series, we will take a look at the class diagrams for both 
the geography and geometry classes, and we'll start writing some TSQL code! 

SQL Server 2008 SSMS Enhancements - 
Debugging Support 
By Jacob Sebastian 

Introduction 

In the previous session 
(http://www.sqlservercentral.com/articles/Management+Studio/63536/) we 
discussed some of the enhancements/new-features added to SSMS 2008. This 
article and the previous one are based on SQL Server 2008 RC0 release. Some 
of the features may change in the final release of the product.  

http://www.sqlservercentral.com/articles/Management+Studio/63536/�


The Best of SQLServerCentral.com – Vol.7 

220 
 

One of the features that I find very exciting is the debugging support. SSMS 
2008 allows you to debug TSQL batches, stored procedures, triggers, functions 
etc. We will have a quick look at the debugging capabilities of SSMS in this 
session.  

The debugging menu 

The debugging menu has menu items for almost all debugging activities. You 
could find there almost everything that you would expect from an IDE that 
supports debugging.  

 

Debugging a Batch 

You could debug database objects (Stored Procedures, Functions etc) as well as 
TSQL batches. If you wish to debug a specific portion of the code, you could 
select those lines and debug it.  

 



The Best of SQLServerCentral.com – Vol.7 

221 
 

You can add/remove breakpoints by pressing F9, selecting 'Toggle Breakpoint' 
menu item from the 'Debug' menu. You could also do this by clicking/right-
clicking on the left margin of the IDE. 

Debugging information 

After you start debugging, you can open several debug windows to monitor 
different debugging information. 

 

If you don't see those windows when you start debugging, you can open them 
from the "windows" submenu of the "debug" menu. 

  



The Best of SQLServerCentral.com – Vol.7 

222 
 

Using the debug windows 

 

There are three windows that help to evaluate the value of 
expressions/variables: "immediate", "command" and "watch"/"QuickWatch". 
However, they do not seem to be able to evaluate functions. For example, the 
function "GETDATE()" returns an error. 

Debugging stored procedures 

Debugging stored procedures is pretty easy with SSMS. Just select the 
EXECUTE statement and click "Start Debugging" menu or press "ALT+F5". 



The Best of SQLServerCentral.com – Vol.7 

223 
 

 

You can drill down to other child stored procedures, functions etc being called 
from your stored procedure.  

 



The Best of SQLServerCentral.com – Vol.7 

224 
 

The "Call Stack" window will show the call stack that will help you to keep 
track of the execution path.  

 



The Best of SQLServerCentral.com – Vol.7 

225 
 

 

Debugging Functions 

SSMS supports debugging functions too. To debug a function, select the TSQL 
statement that calls the function and click "start debugging" or press 
"ALT+F5". 



The Best of SQLServerCentral.com – Vol.7 

226 
 

 

Previously, people used to debug stored procedures using PRINT or SELECT 
statements. So when your stored procedure behaves in unexpected manner, you 
could embed some PRINT or SELECT statements and find out what is going 
wrong with the code. However, when something goes wrong with a function, it 
was harder to identify. 

The SSMS debugging support makes this job easier. 

Debugging Triggers 

Just like functions, triggers were difficult to debug too. People used to debug 
triggers using print statements or temp tables. SSMS makes it lot easier now. 
You can debug an INSERT/UPDATE/DEBUG statement and it will take you 
to the body of the triggers and you can step through the code.  



The Best of SQLServerCentral.com – Vol.7 

227 
 

 

Conclusions 

Debugging is something that every developer does quite a lot of times. In this 
session, I did not go deeper into debugging. My intention is to give a few hints 
and I am sure you will be able to dive deeper into it. While debugging, if I find 
some more interesting stuff, I will come back with another session on SSMS 
debugging. Till then, “Happy Debugging!”. 

  



The Best of SQLServerCentral.com – Vol.7 

228 
 

Deploying Scripts with SQLCMD 
By David Poole 

I have had to deploy database applications in a variety of scenarios and very 
early on in my career I reached the conclusion that any means of automating 
the deployment process was a "Good Thing". 

Manual deployment introduces a point of failure for even the most diligent 
DBA, particularly when that deployment has to take place in hours when most 
sane people are soundly asleep. Where I work at present downtime costs big 
money (a years salary in lost revenue for every minute) hence the early start. 

This means that you would be undertaking a manual process under the 
following conditions: - 

• Under stress due to cost considerations  

• On 3 or 4 hours disturbed sleep  

• Severely decaffeinated  

The SQLCMD and its predecessors OSQL and ISQL offer a means of 
automating such deployments. However SQL Management Studio offers the 
facility to use SQLCMD from within SQL scripts by using SQLCMD Mode. 

SQLCMD Mode 

SQLCMD Mode can be activated/deactivated from a menu option within SQL 
Management Studio as shown below. 



The Best of SQLServerCentral.com – Vol.7 

229 
 

 

When SQLCMD Mode is engaged then the specific SQLCMD commands are 
shown on a grey background as shown below 

 

As you can see from the script above I have asked to connect to a database 
server called DBDevelopmentServer and run a query in the Adventureworks 
database. 



The Best of SQLServerCentral.com – Vol.7 

230 
 

Straight away we can see that it is possible to specify the server that a script is 
supposed to run on as part of the script. 

This may sound like small beer but for me a typical deployment may involve 
tens of scripts all to be deployed to servers with remarkably similar names. 
Being able to state explicitly what server the scripts are to be run on gives a 
major advantage 

An incorrect server name will show up in any peer review  

The server name is "in-your-face"  

User variables in SQLCMD Mode 

The :setvar command is a useful addition in the SQLCMD arsenal. 

We can refine our first sample script slightly to demonstrate its usage 

 

By itself this does not look like a big deal but it demonstrates the following 

Connections can be made on user variables  

Databases can be specified in user variables  



The Best of SQLServerCentral.com – Vol.7 

231 
 

Running many files from a single INSTALL.SQL script 

Ultimately we want to reach the point where we only have to run a single 
Install.SQL script to deploy an entire solution. 

Fortunately SQLCMD mode has a suitable facility to allow this to happen. To 
demonstrate it I created a simple script called TestSQLCMD.SQL as follows 

DECLARE 
         @UserName SYSNAME , 
         @DeploymentTime CHAR(18), 
         @DeploymentDB sysname, 
         @CRLF CHAR(2) 
SET      @CRLF = CHAR(13)+CHAR(10) 
SET @UserName = SUSER_SNAME()+@CRLF 
SET @DeploymentTime = 
CONVERT(CHAR(16),CURRENT_TIMESTAMP),120)+@CRLF 
SET @DeploymentDB = DB_NAME()+@CRLF 
PRINT '***************************************' 
RAISERROR('DEPLOYMENT SERVER: %s%sDEPLOYMENT DB: %sDEPLOYMENT 
TIME:%sDEPLOYER: 
%s',10,1,@@SERVERNAME,@CRLF,@DeploymentDB,@DeploymentTime,@User
Name) 
PRINT 'TestSQLCMD.SQL IN VSS UNDER 
Solutions\SQLServerCentral\SQLCMD' 
PRINT '***************************************' 
GO 
SET NOCOUNT,XACT_ABORT ON 
INSERT INTO  Person.ContactType(   
        [Name], 
        ModifiedDate 
) VALUES ( 
        /* Name - Name */ N'Dave', 
        CURRENT_TIMESTAMP 
) 
RAISERROR('%i record(s) deployed to 
Person.ContactType',10,1,@@ROWCOUNT)   

Ignore the code before the INSERT statement, it is purely a standard header I 
use in all my scripts to be able to verify that a script has been run on the correct 
server. 

However, note that there is no database mentioned or connection specified. In 
fact I deliberately disconnected this query and saved it in my local "My 
Documents" folder as follows 



The Best of SQLServerCentral.com – Vol.7 

232 
 

C:\Documents and Settings\David\My 
Documents\SQLServerCentral\SQLCMD\TestSQLCMD.SQL 

Our original SQLCMD mode script can then be modified as follows 

 

This demonstrates something incredibly important. 

We can control all our connections and the databases we use from a single file  

Even if a release engineer downloads our project scripts to a completely 
different directory they can specify that directory in a variable. Control is still 
from a single file.  

We can mix and match strings and variables with SQLCMD mode commands.  

There is another consideration I should like to draw your attention to. In some 
cases I may want to run a single script on several servers or on several 
databases for a single deployment. Two specific examples come to mind. 

Replication subscriptions where the @sync_type=N'none' where you have to 
create objects manually.  

Databases that are patterns where a fix applied to one should be applied to all.  

This method of scripting allows me to run that same script many times 
automatically. 

  



The Best of SQLServerCentral.com – Vol.7 

233 
 

Output and errors 

If you are going to implement a single INSTALL.SQL script then you have to 
make sure that the scripts that are called from INSTALL.SQL are pretty much 
bomb proof. They should not produce errors and should be safe even if they are 
rerun by mistake. In short we have to raise our game when it comes to our 
scripting skills. 

We have to be much more rigorous with error trapping and pre-emptive checks 
when handing installation scripts over to a 3rd party. Of course our output and 
errors will still be shown on the screen but it would be safer to ensure that the 
output goes to specific text files so the installation can be reviewed. 

With this in mind we alter our original script one more time. 

 

Here you can see I have asked to put the errors and output into text files in the 
installation directory. The install.out file can be found on 
SQLServerCentral.com. 

Conclusion 

I first came across SQLCMD mode when working with Visual Studio Team 
Edition for database professionals. I was trawling through the various files that 
Visual Studio creates in order to form a deployment script and came across a 
file which simply listed every database object file prefixed by :r. 

Digging around revealed that Visual Studio was just calling SQLCMD mode 
using an install.SQL file. 

SQLCMD mode is useful for simple deployments where the release engineer 
will have access to SQL Management Studio. If Microsoft ever consider 



The Best of SQLServerCentral.com – Vol.7 

234 
 

extending SQLCMD mode I would suggest that they look at error handling and 
some if…then…else constructs to aid automated deployments. 

For this reason and given the time I prefer to use SQLCMD.EXE from a 
windows command file as this already has the ability to do such things. 

Real-Time Tracking of Tempdb 
Utilization Through Reporting Services 
By Marios Philippopoulos 

Introduction 

Although SQL Server 2005 has been around for some time, I am sure the 
feeling of frustration of dealing with tempdb-related issues in earlier versions 
of the product is a vivid memory for many DBAs. As is the case with other 
system objects, tempdb in SQL Server 2000 is essentially a black box. Besides 
access to database-file-size and free-space information, breaking down tempdb 
utilization to contributions from individual components, such as internal and 
user objects, is a challenge. This information is vital if the DBA is to make 
informed decisions that target, on a case-by-case basis, the main culprits of 
tempdb growth. This all changes with SQL Server 2005. For an excellent 
discussion on tempdb in SQL Server 2005 I refer the reader to this white paper: 
‘Working with tempdb in SQL Server 2005’ (http://technet.microsoft.com/en-
gb/library/cc966545.aspx#E4CAC). 

Starting with SQL Server 2005, tempdb is used to store three types of objects: 
internal objects, user objects and version stores (new in SQL Server 2005). 
Internal objects store intermediate results from query processing operations, 
such as hash joins and sorts, as well as information related to cursors, 
INSTEAD OF triggers, the Service Broker and LOB variables. User objects 
include user-defined and system-catalog tables and indexes, table variables, 
table-valued-function return values and the mapping index if the 
SORT_IN_TEMPDB option is selected in online clustered-index builds. Lastly, 
version stores contain row-versioning information for features, such as 
snapshot isolation, online indexing, AFTER triggers and Multiple Active 
Result Sets (MARS). It is clear that an automated way is needed to sort through 
this wide array of data and target key contributions. This is where the present 
solution comes in. 

http://technet.microsoft.com/en-gb/library/cc966545.aspx#E4CAC�
http://technet.microsoft.com/en-gb/library/cc966545.aspx#E4CAC�


The Best of SQLServerCentral.com – Vol.7 

235 
 

SQL Server 2005 comes with three dynamic management views (DMVs) for 
probing tempdb usage at the instance, session and task level, respectively: 
sys.dm_db_file_space_usage, sys.dm_db_session_file_usage and 
sys.dm_db_task_space_usage. In addition to the three types of objects 
mentioned in the previous paragraph, a fourth type of utilization, mixed extent 
pages, is exposed by view sys.dm_db_file_space_usage at the instance level. 
Mixed extents consist of pages allocated to different objects (as opposed to 
uniform extents with pages dedicated to a single object). A high number of 
tempdb mixed-extent pages at any given time suggest that a large number of 
small tempdb objects (temp tables, table variables) is simultaneously being 
created and/or that there is high extent fragmentation in tempdb. 

Here I combine time-sensitive information collected by the above DMVs with 
the power of SQL Server 2005 Reporting Services to create a tool that provides 
a visual representation of tempdb utilization, down to the task level, for 
multiple SQL instances and in an up-to-the-minute time frame. In fact, a 
Reporting Services installation is not even really required: the presented 
solution can be used from the comfort of one's Business Intelligence 
Development Studio (BIDS) environment, and, in fact, this is how I have 
created the figures for this article. 

The inspiration of using SSRS to present information in real time and from 
multiple data sources in a "dynamic" user interface came to me from an article 
published in this site by Rodney Landrum some time ago: ‘The Reporting 
Services 3-Trick Pony’ 
(http://www.sqlservercentral.com/articles/Reporting+Services+(SSRS)/61339/)
. Up to that point I saw SSRS simply as a tool of viewing "static" information, 
stored in a single repository that is refreshed at (mostly) infrequent scheduled 
intervals. The idea of using dynamic connection strings to selectively present 
data from multiple data sources, in graph format, and as events unfold, 
transformed Reporting Services, in my mind, to a powerful interactive tool with 
all the trappings of a full-blown web application, in which data is presented in 
ways that empower users to make timely and effective decisions. 

The BIDS Solution 

In the solution presented here, information is presented to the user is a highly 
dynamic manner that allows for the report palette to be occupied by 
information from multiple SQL instances, one instance at a time. 

http://www.sqlservercentral.com/articles/Reporting+Services+(SSRS)/61339/)�
http://www.sqlservercentral.com/articles/Reporting+Services+(SSRS)/61339/)�


The Best of SQLServerCentral.com – Vol.7 

236 
 

The layout of the report, as it appears in BIDS, is presented in Figures 1 and 2. 
The report consists of four main areas: a table listing the SQL Server instances 
of interest (left-most side of the screen); a group of textboxes (acting as 
buttons), each corresponding to a specific aspect of tempdb utilization (top, 
under the report title); the chart area (middle); and four tables (bottom) for 
showing detail information (Figure 2). The role of each of these features will 
become clear once we get to the Results section. 

 

Figure 1. The layout tab (top part).  



The Best of SQLServerCentral.com – Vol.7 

237 
 

 

Figure 2. The layout tab (bottom part).  

The Data area of the report is shown in Figure 3. The purpose of the 
ServerNames dataset (the one highlighted) is to populate the list of SQL 
instances monitored (left-most table in Figure 1). This information is stored in a 
central database, and is the only "static" connection in the report. The other five 
datasets, listed underneath ServerNames in Figure 3, populate the other areas of 
the report (as shown in Figures 1 and 2), and they are all "dynamic", in that 
they depend on a connection string that changes based on the choices of the 
report user. 



The Best of SQLServerCentral.com – Vol.7 

238 
 

 

Figure 3. The Data tab.  

The properties of a "dynamic" dataset, 
rpt_Tempdb_InstanceLevelStats_TimeSeriesByChartFlag, are shown in Figure 
4. The query string is an expression that depends on the value of the chartFlag 
parameter. Report parameters are passed as input every time a report is 
refreshed as a result of a user action. 



The Best of SQLServerCentral.com – Vol.7 

239 
 

 

Figure 4. The rpt_Tempdb_InstanceLevelStats_TimeSeriesByChartFlag dataset  

The Dynamic_Connection datasource is shown in Figure 5. The connection 
string depends on another report parameter: ServerName. This parameter 
represents the SQL instance selected from the list on the left-most side of the 
report area (Figure 1). Based on the user's selection, the connection string is 
dynamically constructed at run time and a connection is made to retrieve the 
requested data. 

The 2 report parameters are shown in Figure 6. 



The Best of SQLServerCentral.com – Vol.7 

240 
 

 

Figure 5. The Dynamic_Connection datasource  

 

Figure 6. Report parameters  



The Best of SQLServerCentral.com – Vol.7 

241 
 

There are two regions in the report where the user is able to make requests on 
what data they want to see: the leftmost Server Instances table and the array of 
five textboxes/buttons right above the chart (Figure 1). These features 
essentially act as buttons/hyperlinks, in that they respond to the user's click 
action to refresh the report accordingly. The way this is accomplished is 
through the Action property. Figure 7 shows the configuration of the Action 
property for textbox ServerInstance. The Action property acts essentially as an 
event handler: it defines what should be done once the user clicks that textbox. 
In this case we instruct it to jump back to this report with the parameters shown 
in Figure 8 (obtained by clicking on the Parameters... button in Figure 7). The 
ServerName parameter obtains its value from the value of the ServerInstance 
box that the user click on; again, this will be more clear below, once an 
example is shown. Figure 9 shows the Parameters dialog of textbox 
VersionStorePagesBox (2nd button from the left at the top part of the report, 
Figure 7). Here, there are 2 parameters: the ServerName parameter which takes 
its value from that of the ServerInstance box (passed back to the report earlier 
as the ServerName parameter, as a result of the user clicking on a 
ServerInstance box, Figures 7 and 8); and the ChartFlag parameter, a value 
from 1-5 for each of the five "buttons" above the chart area (Figure 1). 

 

Figure 7. The Action property of textbox ServerInstance  



The Best of SQLServerCentral.com – Vol.7 

242 
 

 

Figure 8. The Parameters dialog of the Action property of textbox ServerInstance  

 



The Best of SQLServerCentral.com – Vol.7 

243 
 

Figure 9. The Parameters dialog of the Action property of textbox 
VersionStorePagesBox  

Figure 10 shows the Data tab of the Chart Properties dialog box, where the 
name of dataset rpt_Tempdb_InstanceLevelStats_TimeSeriesByChartFlag is 
specified. This is the dataset that supplies the chart data and was briefly 
described in Figure 4.  

 

Figure 10. The Data tab of the Chart Properties dialog box  

  



The Best of SQLServerCentral.com – Vol.7 

244 
 

The Code 

The report data is generated by two SQL jobs, running on every monitored 
instance: DBA - Tempdb Usage - Monitor and DBA -Tempdb Usage - 
Calculate Stats, Prune Tables. Job DBA - Tempdb Usage -Monitor runs every 
minute and collects the information presented in the report. Job DBA - Tempdb 
Usage - Calculate Stats, Prune Tables runs once an hour and performs two 
tasks: first, it calculates the mean and standard deviation values of the version-
store and mixed-extent data distributions; second, it prunes data older than 24 
hours. 

Job DBA - Tempdb Usage -Monitor executes stored procedure 
Tempdb_SampleSpaceUsage, that is based on code I first saw on this link: 
Working with tempdb in SQL Server 2005 
(http://www.sqlservercentral.com/articles/ 
Reporting+Services+(SSRS)/61339/

In addition, Tempdb_SampleSpaceUsage checks whether the current number of 
version-store or mixed-extent pages has exceeded 5 standard deviations above 
the mean value (calculated once an hour by job DBA -Tempdb Usage - 
Calculate Stats, Prune Tables. If that is the case, stored procedure 
ExecRequests_Poll is executed and information about the current execution 
requests and sessions is stored in table ExecRequests for later analysis. 

). Tempdb_SampleSpaceUsage polls 
system views sys.dm_db_file_space_usage, sys.dm_db_session_space_usage, 
sys.dm_db_task_space_usage and sys.dm_exec_sessions and stores instance-, 
session- and task-specific tempdb-usage data in corresponding tables. It is this 
information that is then fed to the report chart (see Figure 1 and Results section 
below). 

The reason for calculating the mean and standard deviation of the version-store 
and mixed-extent page distributions and for polling the current execution 
requests if a threshold is exceeded is simple: the 
sys.dm_db_session_space_usage and sys.dm_db_task_space_usage views 
provide information on user-object and internal-object page utilization, but not 
for version-store and mixed-extent pages at the session and task level. I 
therefore had to get this type of information directly by polling the 
sys.dm_exec_requests and sys.dm_exec_sessions views whenever "something 
interesting happened": when the current values exceeded a predefined 
threshold. At the same time I did not want to be inundated with data, so I chose 
to poll the current exec requests only when warranted. 



The Best of SQLServerCentral.com – Vol.7 

245 
 

Results 

Figure 11 shows the opening screen of the report. Here I am monitoring five 
database-engine instances, which I have aliased for the purposes of this article 
as alpha, beta, gamma, delta and epsilon. Viewing the various aspects of 
tempdb utilization is made possible by the five buttons at the top. By default, 
the selected instance is alpha, but a different instance can be chosen (and the 
corresponding "button" will be highlighted in yellow accordingly).  

 

Figure 11. Opening screen  

Figure 12 is showing the number of unallocated (empty) tempdb pages for 
instance epsilon over a period of 24 hours. In our production environment we 
allocate a large amount of disk space to tempdb data files to guard against 
unexpected surges in tempdb utilization (due to suboptimal queries, for 
example). In this particular case the total number of pages allocated is close to 
50,000,000 (or 40 GB). The small dents visible at the top of the curve are due 
to tempdb usage events that occurred during the monitoring time frame. The 
table below the graph lists the lowest values of unallocated pages (where 
utilization is highest) and the times at which they have occurred.  



The Best of SQLServerCentral.com – Vol.7 

246 
 

 

Figure 12. Unallocated tempdb extent pages for instance epsilon  

Determination of the individual contributors to tempdb usage can be made by 
clicking each of the other four buttons. Figure 13 is showing the Version-Store-
Pages profile of instance beta. As in the case of total unallocated pages, the 
table below the chart is showing the top outliers and times at which they took 
place. 



The Best of SQLServerCentral.com – Vol.7 

247 
 

 

Figure 13. Version Store Pages for instance beta  

User-object and internal-object allocated pages for instance beta are shown in 
Figures 14 and 15, respectively. As discussed above in the Code section, 
identification of the sessions and tasks consuming most of the user- and 
internal-tempdb-object pages is straightforward through system views 
sys.dm_db_session_space_usage and sys.dm_db_task_space_usage. This is 
why, unlike in the case of version-store (Figure 13) and mixed-extent pages, the 
actual top consuming tasks are explicitly shown in Figures 14 and 15. The main 
contributor in Figure 15 is a re-indexing job, but it could have easily been a 
query originating from a user application. In the past we have detected such 
queries, consuming tens of GB of tempdb space, and have subsequently 
reduced this utilization through proper indexing and code revisions. 



The Best of SQLServerCentral.com – Vol.7 

248 
 

 

Figure 14. User-object allocated pages for instance alpha  

 

Figure 15. Internal-object allocated pages for instance beta  

  



The Best of SQLServerCentral.com – Vol.7 

249 
 

Discussion and Conclusion 

Knowledge of the top tempdb-consuming processes and their times of 
occurrence is an essential goal of any general database-performance monitoring 
plan. Reducing tempdb utilization by targetting top consumers can result in 
overall lower disk I/O, better optimized queries and a generally more 
responsive and more scalable database application. 

The proper in-advance sizing of tempdb files can favorably affect application 
performance by: (i) preventing application timeouts that occur when a tempdb 
file grows in response to an increased space requirement by a user process; (ii) 
helping eliminate the physical fragmentation of the tempdb files, an 
unavoidable by-product of file autogrowth, especially in situations where disk 
space is shared by non-tempdb files. It is not always feasible (or advisable) to 
try and prevent these adverse effects by pre-emptively allocating huge amounts 
of disk space (in the tens of GB) to tempdb files, whether or not it will 
ultimately be needed. Knowledge of the actual tempdb space required while an 
application is subjected to production-like workloads in a testing environment 
can help to more efficiently pre-allocate the appropriate disk space to tempdb 
before the application is rolled out to production. In cases of applications that 
have already been active in production for some time, prolonged monitoring of 
tempdb utilization can help DBAs and storage engineers pinpoint those SQL 
instances with in-excess tempdb allocated space, in the end making possible the 
more effective redistribution of these excess disk resources in other areas of the 
IT infrastructure. Figure 12 shows this to be an issue in our environment as 
well. 

Given the additional tempdb-utilizing components (in the form of the version 
store) available in post-SQL-Server-2000 versions, knowledge of application-
specific contributions to tempdb usage can be especially helpful in upgrade 
initiatives. An obvious culprit is the heavy use of triggers. In our organization 
we rely extensively on triggers for auditing of data modifications, and some of 
our largest systems have yet to be upgraded from SQL Server 2000. Triggers 
do not make use of tempdb in SQL Server 2000, whereas they do in subsequent 
versions of the product. The tool presented in this article will help us get a 
reliable estimate of the additional tempdb resources needed once we upgrade 
our development and test environments to SQL Server 2005/2008. Armed with 
this knowledge, we will be able to size the tempdb files appropriately for the 
given application workload, hence minimizing the risk of tempdb-out-of-space 
"surprises" once the upgrade is finally rolled out to production. Should we also 
decide to switch on additional "new" features, such as one of the snapshot 
isolation levels, the tool will make it easy to determine the size of this extra 



The Best of SQLServerCentral.com – Vol.7 

250 
 

contribution to the tempdb storage and help us plan accordingly while still in 
the testing phase of the application lifecycle? 

It is important to note that the presented solution is beset by a couple of 
limitations. First, sub-minute processes cannot be detected accurately, as the 
monitoring job runs once a minute. These "fast" processes are far less likely, 
however, to end up being major tempdb consumers. Second, because of the 
way the underlying system DMVs are designed, session and task-level 
information is not readily available for version-store and mixed-extent page 
usage. I have been able to obtain this type of information by inference only, 
through polling the sys.dm_exec_requests view once utilization exceeded a 
statistically defined threshold. A costly trigger in one of our applications has 
been identified using this approach and some puzzling results shared on this 
forum (see ‘Costly update trigger -70000000 logical reads for 30000 rows 
updated!’ http://www.sqlservercentral.com/ 
Forums/Topic647604-360-4.aspx and ‘High count of version-store pages in 
tempdb’ http://www.sqlservercentral.com/Forums/Topic629370-360-
1.aspx#bm629452). 

Although the importance of proper tempdb sizing is well documented and 
understood (see, for example, ‘Capacity Planning for tempdb’ 
http://msdn.microsoft.com/en-us/library/ms345368.aspx), it is challenging to 
come up with an automated monitoring plan that exposes top tempdb 
consumers down to the individual session and task level, in real time and in a 
convenient visual format. The application described in this article achieves 
these goals by combining the wealth of existing knowledge with much 
improved system-diagnostics and Reporting-Services features in versions post-
SQL-Server-2000. My hope is that this will prove to be an indispensable tool 
for many others besides me and for some time to come.  

  

http://www.sqlservercentral.com/Forums/Topic647604-360-4.aspx�
http://www.sqlservercentral.com/Forums/Topic647604-360-4.aspx�
http://www.sqlservercentral.com/Forums/Topic629370-360-1.aspx#bm629452�
http://www.sqlservercentral.com/Forums/Topic629370-360-1.aspx#bm629452�
http://msdn.microsoft.com/en-us/library/ms345368.aspx�


The Best of SQLServerCentral.com – Vol.7 

251 
 

Transparent Data Encryption (TDE) 
SQL Server 2008 
By Roy Ernest 

Introduction 

You may have heard about Transparent Data Encryption (TDE), which was 
introduced in SQL Server 2008. But what does TDE do? How does it help us 
DBA's? 

One of the biggest concerns for a DBA is the "data leak". For instance, suppose 
your company is dealing with payment processors and stores credit card 
information, banking information and other personnel information of your 
clients. What would be your primary concerns? Likely they would be loss of 
data due to corruption, a hardware issue that could bring your database down, 
and security. 

In this article we will look at the physical security of the database files. Until 
the release of SQL Server 2008, there was no native method of securing the 
physical files of the database. There were a couple of third party tools that 
could secure some things, but they were add-ons. SQL Server 2008 introduced 
a new feature called Transparent Data Encryption. We will look into some 
details about what this is, how to implement it, what is the impact of enabling 
TDE, and the known issues with TDE. 

First let us look at what encryption is? Encryption is the process of 
transforming information in plain text using a cipher, or algorithm, to make it 
unreadable to everyone other than the person who has the key. There are two 
types of keys; symmetric and asymmetric. When the same value is used to 
encrypt and decrypt, then it is known as a symmetric key. An asymmetric key 
has two parts: one is a private key and the other is a public key. The private key 
is used to encrypt the data and the public key is used to decrypt the data. 

Disclaimer 
Please do not execute any of the scripts provided in the article on 
your production environment before validating and planning them 
in a test environment. 



The Best of SQLServerCentral.com – Vol.7 

252 
 

What is TDE? 

TDE is a full database level encryption that protects the data files and log files. 
As per Microsoft documentation "Transparent data encryption (TDE) performs 
real-time I/O encryption and decryption of the data and log files. The 
encryption uses a database encryption key (DEK), which is stored in the 
database boot record for availability during recovery. The DEK is a symmetric 
key secured by using a certificate stored in the master database of the server or 
an asymmetric key protected by an EKM module." 

One main advantage of TDE is that it does not require any changes to your 
existing application. This enables DBAs to encrypt data using AES and 3DES 
encryption algorithms without having to change the applications that will be 
connecting to the database. 

How is the Data Encrypted? 

When TDE is enabled, the Server starts a background thread that scans all the 
database files and encrypts them. This thread actually creates a shared lock on 
the database. Even when a DDL statement is executed and an Update lock is 
taken on the database, the encryption thread will run asynchronously using a 
shared lock. The only operations that are not allowed while the encryption 
thread runs are modifying the file structure and taking the database offline by 
detaching it. The scan also rolls over the virtual log file so that the future writes 
to the log are encrypted. 

The supported encryption algorithms are AES with 128, 196 and 256 bit keys 
or 3 key triple DES. The encryption does not do any padding to the database 
file. Therefore the size of the database file will stay the same as it currently is 
even when TDE is enabled. But log files will be padded, thus making them 
bigger in size. 

How do we implement TDE? 

Setting up TDE is quite simple. Just four step and you are done. How much 
simpler can it be? 

Create a master key  

Create or obtain a certificate protected by master key.  



The Best of SQLServerCentral.com – Vol.7 

253 
 

Create a database key and protect it by the certificate.  

Set the database you want to protect to use the encryption.  

Now let us try to follow these steps. For creating a Master key, you have to 
execute a Create Master Key command in the Master Database. Before we 
create a Master Key, let us check if it already exists. 

USE master; 
GO  SELECT * FROM sys.symmetric_keys WHERE name LIKE 
'%MS_DatabaseMasterKey%' 
GO   

If no other key has been created before, this should not return any rows. Now 
let us try to create the Master Key. 

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ''; 
GO   

Once this is executed, if you run the above query, you will get one row with the 
column name as ##MS_DatabaseMasterKey##. The first step is now done. 

The second step is to create a certificate protected by this Master Key. This is 
done by executing the command Create Certificate in the Master database. 

CREATE CERTIFICATE MyTDECert WITH SUBJECT = 'My TDE 
Certificate' 
GO   

This statement will create the certificate in sys.certificates. You can see the 
details of this certificate by executing this query. 

SELECT * FROM sys.certificates where [name] = 'MyTDECert' 
GO   

This will return one row with the column [name] as MyTDECert and with the 
description as ENCRYPTED_BY_MASTER_KEY. Step number two is also 
done. We are now half way through. 

The next step will be to create an encryption key and protect it by the certificate 
we just created for the database that needs to be encrypted. From here on please 
be very careful. You are about to encrypt the database of your choice. 



The Best of SQLServerCentral.com – Vol.7 

254 
 

By running the command below, you will create an encryption key for your 
database. 

Use AdventureWorks 
GO 
CREATE DATABASE ENCRYPTION KEY 
WITH ALGORITHM = AES_128  
ENCRYPTION BY SERVER CERTIFICATE MyTDECert 
GO   

As soon as you execute this in SSMS, it will give the message below. Please 
read it carefully. 

Warning: The certificate used for encrypting the database encryption key has 
not been backed up. You should immediately back up the certificate and the 
private key associated with the certificate. If the certificate ever becomes 
unavailable or if you must restore or attach the database on another server, you 
must have backups of both the certificate and the private key or you will not be 
able to open the database. 

If you run this select statement, you will see that you have created an 
encryption key for that database. We are almost done now. The only thing that 
is left to do is to alter the database to set the encryption ON. 

ALTER DATABASE AdventureWorks 
   SET ENCRYPTION ON 
GO   

That's it. We are done. We have successfully encrypted the database. Let us 
confirm it with a couple of steps. If you execute the select statement, it should 
provide the name and details of the encrypted database. 

  SELECT DB_NAME(database_id) AS DatabaseName, * FROM 
sys.dm_database_encryption_keys   

When you run this query, it should return one row since we encrypted only one 
database. But it returns two rows TempDB and AdventureWorks. This is 
because when you set up one Database to encrypt, it will automatically encrypt 
tempdb as well. Actually in my test I am not encrypting Adventure works. I am 
encrypting a test database that I have with a size of 12 Gig. In my case, when I 
run this query more than once, I can see the last column (Percent_completed) 
incrementing. Once the encryption is complete, the Percent_complete column 
will show the value as 0. 



The Best of SQLServerCentral.com – Vol.7 

255 
 

Did it really work? 

What is a better way to find out if this actually made our database physically 
secure other than doing a couple of small tests. The two methods we will use to 
test are restore and attach. First let us take a backup of the Encrypted database. 

  BACKUP DATABASE [AdventureWorks] TO DISK = 
N'D:\BackUp\AdventureWorks_Encrypted.bak' WITH NOFORMAT, 
NOINIT, 
NAME = N'AdventureWorks-Full Database Backup', SKIP, NOREWIND, 
NOUNLOAD, STATS = 10 
GO   

Once this is completed, we will test the restore in a different Server or a 
different instance of SQL Server 2008. In this case, I tried a restore on a 
different server using this command. 

RESTORE DATABASE [AdventureWorks] 
FROM DISK = N'D:\AdventureWorks_Encrypted.bak'  
WITH FILE = 1, 
MOVE N'AdventureWorks' TO N'D:\BackUp\AdventureWorks.mdf', 
MOVE N'AdventureWorks_log' TO 
N'D:\BackUp\AdventureWorks_log.ldf', 
NOUNLOAD, STATS = 10  
GO   

This will give an error like the one provided below. 

Msg 33111, Level 16, State 3, Line 1 
Cannot find server certificate with thumbprint 
Msg 3013, Level 16, State 1, Line 1 
RESTORE DATABASE is terminating abnormally. 

Now we proved that the backup taken after the encryption cannot be restored 
on another server without the certificate. This was just the backup restore 
option. Let us now try the attach database option. 

For this test, first we will copy both the LDF and MDF file to the other server. 
Then run the SQL statement to attach the DB. 

CREATE DATABASE [AdventureWorks] ON 
( FILENAME = N'D:\BackUp\AdventureWorks.mdf'), 
( FILENAME = N'D:\BackUp\AdventureWorks_log.ldf')  



The Best of SQLServerCentral.com – Vol.7 

256 
 

FOR ATTACH 
GO   

When you execute this command, you will get the same error of not finding the 
certificate with the thumbprint as before. So now we have proven that the 
database files are secure. The only way to restore or attach the encrypted 
Database is by adding the same certificate on to the other SQL Server. 

To add the certificate to the other server we have to do two things. First you 
have to back up the certificate onto a file and then create the certificate on the 
other SQL Server. To back up the certificate, execute a Backup Certificate 
command. 

Use Master 
GO   
 

 

BACKUP CERTIFICATE MyTDECert TO FILE = 'D:\MyTDECert.cert' 
 WITH PRIVATE KEY 
 (   
 FILE = 'D:\EncryptPrivateKey.key', 
 ENCRYPTION BY PASSWORD = 'TryToUseOnlyStrongPassword' 
 ) 
GO   

Now you have successfully backed up the certificate. You can use this 
certificate that was backed up to create a certificate in the target server. First 
you have to create a Master Key on the Target Server. Then we will use the 
files generated to create the certificate. 

USE [master] 
GO 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ''; 
GO 
CREATE CERTIFICATE MyTDECert 
 FROM FILE = 'D:\MyTDECert.cert' 
 WITH PRIVATE KEY ( 
 FILE = 'D:\EncryptPrivateKey.key' 
 , DECRYPTION BY PASSWORD = 'TryToUseOnlyStrongPassword' 
 )   

You have successfully created a certificate on the other server. Once this is 
complete, you can restore the encrypted database. 



The Best of SQLServerCentral.com – Vol.7 

257 
 

RESTORE DATABASE [AdventureWorks] 
FROM DISK = N'D:\AdventureWorks_Encrypted.bak'   
WITH FILE = 1, 
MOVE N'AdventureWorks_data' TO 
N'D:\BackUp\AdventureWorks_Data.mdf', 
MOVE N'AdventureWorks_log' TO 
N'D:\BackUp\AdventureWorks_Log.ldf', 
NOUNLOAD, REPLACE, STATS = 10 
GO   

You will see that the database has been restored successfully. This proves that 
the database can only be restored when you have the certificate created in the 
target server. 

Things That Need to be Kept in Mind. 

Now we will look at what needs to be thought out in advance before enabling 
TDE. We will also look at what the after effects of enabling TDE are and the 
known issues of TDE. 

Read Only File Groups and the FileStream Data Type 

This is one known issue with TDE. If there are read-only file groups in your 
database and you try to enable TDE, it will not be successful. Note, I said not 
successful but I did not say it will fail. There is a subtle difference in this case. 
If you go through all the steps for setting up TDE like previously stated for a 
database that has read only filegroup, the encryption will not complete. If you 
look at 
sys.dm_database_encryption_keys, 
you will see that the column Encryption_state shows that the value is 2 instead 
of 3. Value 2 means Encryption in progress. Since the filegroup is set as read-
only, the encryption state will not be reached. 

When FileStream data type is used, you can encrypt the database but the actual 
data on the servers file system will not be encrypted. 

Do you have a Maintenance/Recovery/Warm Standby plan 
set for this database? 

Let us say that you have a simple maintenance plan where you have a daily 
backup and transaction log backup every 2 hrs. Let us consider a couple of 
scenarios. 



The Best of SQLServerCentral.com – Vol.7 

258 
 

1. Warm Standby - This is bound to throw errors since the database 
server where the backup file and transaction log is restored does not 
have the certificate. You have to create the certificate first before you 
start restoring. 

2. Disaster Recovery Plan of Weekly Back up and Transaction Log - 
Let us consider the scenario where your OS on your server started 
throwing some fatal errors due to hardware issues. Since you have your 
back up and your transaction log, the decision is made to rebuild the 
server or migrate to a new server. When you try to restore the database 
backup and transaction log it will throw an error since you do not have 
a backup of the certificate. So make sure you backup the certificate and 
keep it safe for emergencies like this. 

3. Mirroring of the database will also have issues when enabling 
TDE. TDE affects database mirroring. You need to install an 
encryption certificate on the partner servers to be able to mirror the 
database. 

After Effects of Enabling TDE. 

Every new feature will have its benefits and problems. We have seen the 
benefits of TDE: encryption on the physical level. Now let us look at the 
deficiency and problems that arises when using TDE. 

TEMPDB 

Even though you have encrypted only one database (AdventureWorks), when 
you do a 

SELECT DB_NAME(database_id) AS DatabaseName, * FROM 
sys.dm_database_encryption_keys   

it returns two rows instead of one. One is the database that you encrypted and 
the other is the TempDB. This will make the non-encrypted database that 
resides in the same server slow down in performance when it utilizes TempDB. 

Compressed Backups 



The Best of SQLServerCentral.com – Vol.7 

259 
 

Once TDE is enabled, the compression rate of compressed backups drops down 
drastically. Making compressed backups is virtually useless. I have shown 
below figures (Size of Back Up file) of a test database that I used for testing 
this aspect of TDE. 

Full backup with no Compression, No TDE : 11.9 GB 
Full Backup with Compression, No TDE : 2.18 GB 
Full Backup with no Compression, TDE Enabled : 11.9 GB 
Full Backup with Compression, TDE Enabled : 11.9 GB 

The actual size in KB that was different between compressed and non 
compressed back up once TDE was enabled was 22,949 KB. 

Known Issue with TDE 

While I was doing my research on TDE, I stumbled upon an issue that was 
raised in SQLServerCentral.com. One of the posters by the name of Amit 
raised this issue. This issue was then posted in connect by Grant Fritchey aka 
the Scary DBA who is a well regarded poster. Grant then posted about this 
issue in Connect (https://connect. 
microsoft.com/SQLServer/feedback/ViewFeedback.aspx?FeedbackID=423249
). Therefore I am thankful to both of you. Let us look at the Issue. 

If you can set a database to use encryption, we should be able to set it to NOT 
use encryption as well. Here is where the issue starts. To set the encryption off, 
we have to alter the Database. 

ALTER DATABASE AdventureWorks SET ENCRYPTION OFF 
GO   

This will set the encryption OFF. We can double check if encryption is off by 
running a select statement. 

SELECT * 
FROM sys.dm_database_encryption_keys   

You will see that the Encryption_state column is 1. That means that the 
database is now unencrypted. If you take a backup of this database and try to 
restore data, you will end up with an error. 

https://connect.microsoft.com/SQLServer/feedback/ViewFeedback.aspx?FeedbackID=423249�
https://connect.microsoft.com/SQLServer/feedback/ViewFeedback.aspx?FeedbackID=423249�
https://connect.microsoft.com/SQLServer/feedback/ViewFeedback.aspx?FeedbackID=423249�
https://connect.microsoft.com/SQLServer/feedback/ViewFeedback.aspx?FeedbackID=423249�


The Best of SQLServerCentral.com – Vol.7 

260 
 

RESTORE DATABASE [AdventureWorks] 
FROM DISK = N'D:\AdventureWorks_no.bak' 
WITH FILE = 1, 
MOVE N'AdventureWorks_data' TO 
N'D:\BackUp\AdventureWorks_Data.mdf', 
MOVE N'AdventureWorks_log' TO 
N'D:\BackUp\AdventureWorks_Log.ldf', 
NOUNLOAD, REPLACE, STATS = 10 
GO   

This will give the Stats of how much percentage is restored and in the end, 
when it is supposed to finish with the restore, it throws an error. 

Msg 3283, Level 16, State 1, Line 1 
The file "AdventureWorks_log" failed to initialize correctly. Examine the error 
logs for more details. 

From what I have read so far from the issue, once TDE is enabled, even after 
you disable it there is always a reference to the certificate. This causes the 
restore of backup file to fail. 

Conclusion 

We have seen that the Transparent Data Encryption works, but has some small 
issues and drawbacks. It is easy to set up, but be very careful. Make sure you 
have a backup of the certificate in triplicate. If one media gets corrupted where 
the backup of certificate is stored, you have the other two media. 

Now here is a point to ponder. If you had read through the article, I had 
specified that compressed backups are next to useless once we have TDE 
enabled. That means that a small/medium sized database (Anywhere above 50 
GIG) will probably have a backup file of that size itself. If someone is able to 
steal the backup file of that size, you have a very big issue. 

Please keep in mind that you have to test everything thoroughly in a test 
environment before you think of setting up TDE in production. 

  



The Best of SQLServerCentral.com – Vol.7 

261 
 

Introduction to DML Triggers 
By Jack Corbett 

Being a frequent contributor to the forums, I have seen many questions about 
triggers and seen many trigger implementations that could be dangerous. 
Hopefully this article will answer some of those questions and clear up some 
common misconceptions. 

Types of Triggers 

SQL Server provides 2 types of DML triggers, AFTER and INSTEAD OF 
(added in SQL Server 2000). Triggers are only fired when a data modification 
statement is issued (UPDATE, INSERT, DELETE). There are no SELECT 
triggers. SQL Server 2005 also intoduced DDL Triggers which will not be dealt 
with in this article. 

AFTER Triggers 

AFTER triggers take place after the action has taken place and are the default 
trigger created if you do not specify the trigger type in the CREATE TRIGGER 
statement. When an AFTER trigger is applied to a table the action takes place, 
then the trigger fires. Because the trigger is part of the transaction any error 
withing the trigger will cause the entire transaction to fail and rollback. A 
typical use for an AFTER trigger is to log the action to an audit or logging 
table. 

INSTEAD OF Triggers 

INSTEAD OF triggers take place instead of the modification being made. They 
are Microsoft's answer to BEFORE triggers available in other RDBMS 
systems. If I define an INSTEAD OF trigger on a table FOR INSERT the 
trigger will fire BEFORE the data is inserted into the table. If I do not repeat 
the INSERT within the trigger then the insert will not take place. For example 
this trigger would be inappropriate as it never completes the insert: 

Note: This code is available at www.sqlservercentral.com 



The Best of SQLServerCentral.com – Vol.7 

262 
 

If your business rules only allow for five departments in a group, you could do 
something like this so the insert takes place: 

Note: This code is available at www.sqlservercentral.com 

Coding Triggers 

All of the following examples will use AFTER triggers. 

Coding to Handle Sets 

The first thing a DBA or Developer must understand is that triggers deal with 
SETS, not individual rows. The most common mistake I see made in triggers is 
using variables incorrectly within a trigger, which means the trigger will only 
handle a single row update. An example would be this: 

Note: This code is available at www.sqlservercentral.com 

The trigger handles this update correctly: 

Update Person.Contact 
     Set LastName = 'Corbett' 
Where 
     ContactId = 12   

But it does not handle this update correctly: 

Update Person.Contact 
     Set LastName = 'Corbett' 
Where 
        ContactId Between 12 and 17   

Which row update will be logged by the trigger? Your guess is as good as mine 
since you cannot use the ORDER BY clause in an UPDATE, thus the order of 
the update is not guaranteed. Here is the correct way to code this trigger to 
handle any UPDATE: 

Note: This code is available at www.sqlservercentral.com  

Now, I know someone is asking, "What if I need to process each row?". If this 
were posted on a forum I would ask, why? What is your desired result at the 
end of the process? Then I would attempt to provide a set-based option, and if I 



The Best of SQLServerCentral.com – Vol.7 

263 
 

couldn't I would bet someone else could. In all honesty, if you think you need a 
loop (cursor) in a trigger you probably want to re-evaluate your process as that 
will absolutely kill performance. In my last position I worked with a third party 
product that handled our quality results, both from production machine 
processes and the lab. We used industry-standard unique keys for our products 
which would be re-used every 2 years, so I needed to purge data prior to the the 
re-use of the unique key. Since the product tied to the test results was no longer 
in the system I also wanted to purge the quality results, but I ended up never 
getting the process done. Why? Because the system had a trigger on the tests 
table with a cursor in it! So when I would attempt a batch delete of 1 day's data, 
about 10000 or so results, I would wait and wait and wait, while the server was 
pegged at 100%. Thankfully I had a test server, and never tried this on the 
production server. As I investigated why the server was being pounded by a 
simple delete of ~10000 rows using an index, I found the trigger with the 
cursor. Since it was a 24 x 7 x 365 operation I had no downtime to do this 
delete, so I contacted the vendor with the problem and provided a set-based 
trigger that did what they needed. When I tested using the set-based trigger it 
took minutes to do the delete with minimal server impact, but the vendor wasn't 
interested in fixing the problem. I wish I still had access to the database so I 
could give you accurate numbers regarding the improvement, but I can say it 
was orders of magnitude. Here is an example using the Person.Contact table in 
AdventureWorks: 

Update Statement: 

Update [AdventureWorks].[Person].[Contact] 
     Set [LastName] = LastName 
Where 
     ContactID = 12   

Set Based Trigger: 

ALTER TRIGGER [Person].[uContact] ON [Person].[Contact]  
AFTER UPDATE NOT FOR REPLICATION 
AS  
BEGIN 
     SET NOCOUNT ON; 

 

     UPDATE [Person].[Contact]  
          SET [Person].[Contact].[ModifiedDate] = 
GETDATE() 



The Best of SQLServerCentral.com – Vol.7 

264 
 

     FROM 
         inserted 

     WHERE 
          inserted.[ContactID] = 
[Person].[Contact].[ContactID]; 
END; 

Cursor Trigger: 

ALTER TRIGGER [Person].[uContact] ON [Person].[Contact]  
AFTER UPDATE NOT FOR REPLICATION AS  
BEGIN 
    SET NOCOUNT ON; 

    Declare @ContactId Int   

    Declare c_update Cursor For 
        Select  
              ContactId 

        From 
              inserted 

Open c_update 

    Fetch Next From c_update Into 
        @ContactId 

    While @@FETCH_STATUS = 0 

         Begin 
              UPDATE [Person].[Contact]  
                   SET [Person].[Contact].[ModifiedDate] 
= GETDATE() 

              WHERE  
                   [Person].[Contact].[ContactID] = 
@ContactId 

              Fetch Next From c_update Into 
                  @ContactId 

        End 

    Close c_update 

    Deallocate c_update 
END; 

I ran the update 6 times against each trigger and here is how they compare 
using STATISTICE TIME 



The Best of SQLServerCentral.com – Vol.7 

265 
 

Statistics Time Results (in ms) 
 Set-Based Cursor Ratio 

Low 5 15 33% 
Avg 8.83 18.83 47% 
Hi 18 24 75% 

So you can see that the set-based trigger is over 50% faster on average in this 
case where we are only doing a single row update. 

Outside Actions in Triggers 

Another common issue I see in forums regarding triggers is how to send an 
email or do some other process that is outside the database. Any action that 
takes place outside the database engine -- email, file manipulation, linked 
servers, etc... -- does not belong inside a trigger, in my opinion. Why do these 
processes not belong in a trigger? I can send mail in SQL Server 2005 using 
database mail, why can't I use it in a trigger? You can, but you need to make 
sure you gracefully handle any errors that may happen when sending that 
email, so your ENTIRE transaction is not rolled back. Remember that the 
trigger is taking place WITHIN a transaction, so any errors in the trigger will, 
unless properly handled, rollback the outer transaction as well, so that 
insert/update/delete will not be successful because of the trigger. Irecommend 
using a trigger to populate a "staging" table and then use a job or a windows 
service to do the emailing or other outside process. There may be a delay, but 
your main transaction will complete without application complexity "hidden" 
within the trigger. 

Hidden Code 

Many people do not like triggers because they consider it "hidden" code and I 
understand their point. I do try to minimize trigger use and when I do use 
triggers I try to document them well, both within the trigger, and outside in the 
application documentation. There are times triggers are necessary. In a current 
application I am working on we have a table that has a "foreign key" column 
that, based on the type column, can relate to either table A or table B. I can't use 
a normal foreign key in this case, so I use a trigger to insure referential 
integrity. I also use triggers for auditing changes on key tables. I could do this 
in stored procedures or application code, but I want to protect me from me, so I 
put it in a trigger. 



The Best of SQLServerCentral.com – Vol.7 

266 
 

Resources 

‘Trigger Trivia’ by Andy Warren (http://www.sqlservercentral.com/articles/T-
SQL/61483/) 

‘Trouble with Triggers’ blog entry by Conor Cunningham 
(http://www.sqlskills.com/blogs/conor/post/The-Trouble-with-Triggers.aspx)  

‘Triggers...Evil’ blog entry by Louis Davidson 
(http://sqlblog.com/blogs/louis_davidson/archive/2008/07/13/triggers-
evil.aspx)  

And as always, SQL BOL. 

Troubleshooting 
By Mike Walsh 

Introduction: The Problem 

No matter what line of work or stage in life someone is in, we have all 
experienced situations that required troubleshooting. We have all seen or 
performed Good troubleshooting. We also have probably all seen or executed 
"shotgun" troubleshooting. In technology that looks a bit like this: 

Happy Clicking no purpose, just clicking without order 

Doing the first thing your search engine tells you to do (in production, without 
understanding) 

An air of stressed panic adding to the confusion 

Throwing the toolbox at the problem trying everything whether or not it makes 
sense 

If lucky, a solution you can t explain, reproduce or understand 

These same missteps or analogues of them can be seen in just about any 
industry and across all aspects of life. Through this article, I hope to tackle the 

http://www.sqlservercentral.com/articles/T-SQL/61483/�
http://www.sqlservercentral.com/articles/T-SQL/61483/�
http://www.sqlskills.com/blogs/conor/post/The-Trouble-with-Triggers.aspx�
http://sqlblog.com/blogs/louis_davidson/archive/2008/07/13/triggers-evil.aspx�
http://sqlblog.com/blogs/louis_davidson/archive/2008/07/13/triggers-evil.aspx�


The Best of SQLServerCentral.com – Vol.7 

267 
 

shotgun approach and lay out a pattern that can apply to SQL and really to most 
any issue. 

A Pattern 

Design patterns are used in technology to lay out a generic solution to apply to 
a type of problem. We can take that pattern and apply it to our specific situation 
with specific code. They are supposed to help cut down some design time and 
help give a palette of generic solutions to use. 

If we can do this with some degree of success in software problems, why not do 
it with our soft-skill problems? At a recent user group meeting, I struck up a 
conversation with someone. The conversation went to me going off on a 
tangent about how our problems are the same as an electrical problem or the 
same as an ambulance call (I am a volunteer firefighter and EMT-Intermediate 
though I just gave up that license for more family time). If you can boil a 
problem down, start at the beginning and work through it methodically, you 
have the majority of the problem solved. The specific skills come with 
learning; it s your troubleshooting ability that helps you apply those skills. 

To demonstrate, I want to look at a fictitious ambulance call made up from 
pieces of the few hundred I have been on. We will go on that ambulance call, 
look at the steps taken by us, the crew, and then relate it to a pattern. Hopefully 
we ll find corollaries to the SQL "day job" in the process. The numbers relate to 
the pattern described at the end.. 

Patient, Instance & Tomato/Tomahto 

It s 2AM; you are awakened by a high pitched tone coming out of your radio. 
The dispatcher's voice echoes: "Respond for the chest pain patient, 62 year old 
male with cardiac history. He has taken nitro with no relief of pain, difficulty 
breathing ". In the SQL realm, this would be our pager with an alert from a user 
or server. (1) 

You start running the scenarios of this patient in your head. Asking what could 
cause this situation, what are possible diagnoses, what can happen to the 
patient? You are asking what the worst and best cases are and how do you 
handle each. (2) 

As you and your partner rush to the house, you talk about who is responsible 
for what, what equipment you will want for this call. You talk about the 



The Best of SQLServerCentral.com – Vol.7 

268 
 

severity and the scenarios you thought about earlier. You formulate your game 
plan so when you roll up on scene you take in what you need and you know 
how you will operate. You discuss that it is a possible cardiac call and you are 
not operating at the paramedic level and you may want backup from a 
paramedic unit. You let dispatch know to have one stand by or start heading 
that way. (3, 4, 5) 

You arrive on scene, grab the planned equipment and head in. His wife answers 
the door in a panic, you calmly ask her where he is, what is happening and for 
his medication list plus any medical information (Doctor s name, recent 
hospital discharge paperwork, etc). You approach the patient and ask him 
bluntly, Sir what is your problem today? yeah dispatch said it but you want to 
hear it in his words and you want to prod him for the chief complaint; he may 
be nauseous, dizzy, etc. but why did he call 911? What is the main problem that 
woke you up from your dream of query tuning? (6) 

As you converse with the patient, your partner is quickly assessing the patient s 
vital signs with the equipment you brought. The wife is panicking behind you 
like a nervous CIO in your cube as she reminds you, Hurry up! What are you 
doing?! Let s get him to the hospital!! You reassure her and quickly explain 
you are getting the important info. (7) After only a matter of 1-2 minutes you 
have your info and have determined this is a load and go situation. Patient is 
going onto the stretcher and into the ambulance. (8) 

In the ambulance you start an IV line to have it ready should he get worse or if 
the medics meet up with you and want to push medicine for his pain. You do a 
quick electrocardiogram and the printout is pointing to what your questions and 
partner s vital sign checks point to: heart attack. Your differential diagnosis is 
based on what you perceive and what your training and equipment verifies. (9, 
10) 

Your partner begins driving to the hospital when the patient screams out and 
stops responding to any stimuli. You look at the monitor and it shows a rhythm 
that won t sustain life. You verify this with a pulse check: no pulse. You ask 
your partner to stop and get back there with you, unresponsive patient. He 
radios ahead to the medics and climbs in the back. You go through the protocol 
for cardiac arrest as a team. Your partner beginning CPR, you preparing the 
defibrillator by placing the stickers you had ready onto the patient s chest. This 
is a rhythm that can respond to defibrillation so you prepare to do so. You ask 
your partner to clear the patient, verify you are both clear, verify a second time 
and deliver a shock of electricity through the defibrillator. After a couple 
rounds of CPR, defibrillation and medicine through the readied IV, the patients 



The Best of SQLServerCentral.com – Vol.7 

269 
 

pulse returns. The paramedic unit arrives, a paramedic with their added tools 
and training jumps on board as your partner begins to drive towards the 
hospital again. 

The rest of the ride is uneventful. You transfer care to the ED staff, document 
your call and prepare the truck for the next crew. (11, 12) 

A Pattern Emerges? 

Looking at the call above we see some themes emerging in each paragraph. 
Correlating to the numbers in the story we see: 

1. Gather initial information 

2. Prepare your mind 

3. Work as a team 

4. Plan your attack 

5. Don t be afraid of asking for help, better for the patient and you in 
the long run. Don t be afraid to ask for that help to be ready early. Give 
assistance time to respond even if not needed in the end. 

6. Formulate a problem statement and verify it with all parties! Far 
too often I have sat through meetings with confusion, frustration and no 
traction on an issue only to discover we weren t all on the same 
problem. 

7. We also looked at the entire picture and didn t develop tunnel vision. In 
the ambulance this looks like: focus on a flashy symptom and missing 
the root cause or big problem. In the database world this actually looks 
exactly the same: looking at a symptom and missing the root 
cause/serious issue. 

8. Remain Calm 

9. Understand priority and if the issue is stable or declining 

10. Anticipate changes and plan ahead for worsening Readying that IV 
on a patient who doesn t need the meds yet is like taking a backup in 
the initial stages of an issue. If things go good, you don t need it and it 
wasn't expensive to do. if you needed it you will always wish you had 



The Best of SQLServerCentral.com – Vol.7 

270 
 

it. It s more challenging to start an IV on someone with no perfusion, it 
s practically impossible to backup a database that is completely gone. 

11. Use all of the information Don t formulate an opinion based on 
opinion or feel alone. Verify your thoughts with actual information. 
Look at your monitoring tools, your error logs, etc. 

12. Documentation We hate that part of ambulance calls too. It s 
necessary. Helps paint a picture of what went wrong. Forms a part of 
the patient s medical record and covers us should the patient decide to 
sue. Same in the DBA world: Root cause analysis, reference for the 
next time and describes what we did in the heat of the moment for 
change control/auditing purposes. 

13. Clean up and preparation for next call We restocked and prepared 
the rig for the next call. On an ambulance this is more about 
preparation. In the database world this step really looks more like 
preventing the next call 

So now we can play Johnny and Roy, what about SQL? 

Hopefully it s not too huge a stretch to see the pattern emerge. The order may 
be different in the database realm but the principles really aren t different. 
When a problem emerges it may be a temptation to just start trying stuff but if 
you can think about the above steps you should be able to work through the 
problem, figure it out and work on a solution and be able to reproduce that 
same success with future problems.  

One principle I couldn't outline from the medical call is a benefit to us in SQL 
Server, most of the time; Non-Production systems. We couldn t give meds or 
CPR to a replica dev or test version of our patient. We had to rely on training 
and the steps to feel good about the proposed solution (which is all the CPR, 
Defibrillation and cardiac drugs were). In our world, we can and should try to 
replicate a problem in a non-production system and verify results. Not always 
expedient to do so but when we can, we should. 

Had the course of treatment not improved the patient we could have looked at 
other protocols. Perhaps other drugs, different energy settings on the 
defibrillator, cardiac pacing, etc. could have changed the outcome. It s the same 
when troubleshooting an out of control server. The first thing you do, even if 



The Best of SQLServerCentral.com – Vol.7 

271 
 

reasoned and methodical, may not be the solution. Don t be discouraged. Have 
a backup plan, understand why it may not be working and change course. 

Conclusion 

Had we performed some of the sorry examples of technology troubleshooting I 
have seen with this patient it would have looked like this: Checking the internet 
for chest pain, trying the first remedy that comes up (regardless of it's danger or 
benefit); Throwing our drug box at the patient, injecting him with every liquid 
in the ambulance; shocking the patient when it wasn t prescribed; running 
around saying oh no! This isn t good! ; crying when the patient s wife told us to 
hurry up; or anger towards our partner with the patient still suffering. Yes this 
was a critical call but we still slowed it down, stepped back and applied a 
methodology. The extra 1-2 minutes in methodical approaches made the 
difference. Having that time back with a worse outcome seems silly. 

Rushing through a critical situation will only make it worse in the end. Take the 
extra time to understand the problem and understand your solution path, even 
with the CIO pacing the cube. 

SQL Server 2005 Paging the Holy Grail 
By Robert Cary 

Introduction 

The paging and ranking functions introduced in 2005 are old news by now, but 
the typical ROW_NUMBER OVER() implementation only solves part of the 
problem. 

Nearly every application that uses paging gives some indication of how many 
pages (or total records) are in the total result set. The challenge is to query the 
total number of rows, and return only the desired records with a minimum of 
overhead? The holy grail solution would allow you to return one page of the 
results and the total number of rows with no additional I/O overhead. 

In this article, we're going to explore four approaches to this problem and 
discuss their relative strengths and weaknesses. For the purposes of 
comparison, we'll be using I/O as a relative benchmark. 



The Best of SQLServerCentral.com – Vol.7 

272 
 

The 'two-bites' approach 

The most basic approach is the 'two-bites' approach. In this approach you, 
effectively, run your query twice; querying the total rows in one pass, and 
querying your result set in the second. The code is pretty straightforward: 

DECLARE @startRow INT ; SET @startrow = 50 
SELECTCOUNT(*) AS TotRows 
FROM [INFORMATION_SCHEMA].columns 
;WITH cols 
AS 
( 
SELECT table_name, column_name, 
ROW_NUMBER() OVER(ORDER BY table_name, column_name) AS seq 
FROM [INFORMATION_SCHEMA].columns 
) 
SELECT table_name, column_name 
FROM cols 
WHERE seq BETWEEN @startRow AND @startRow + 49 
ORDERBY seq 

It gives the desired results, but this approach doubles the cost of the query 
because you query your underlying tables twice: 

(1 row(s) affected) 
Table 'Worktable'. Scan count 0, logical reads 0, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
 

 

(50 row(s) affected) 
Table 'Worktable'. Scan count 0, logical reads 0, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 34, physical reads 0, read-



The Best of SQLServerCentral.com – Vol.7 

273 
 

ahead reads 0, lob logical reads 0, lob physical reads 0, lob 
read-ahead reads 0. 

The temp table approach 

The 'two-bites' approach is especially undesirable if your paged query is very 
expensive and complex. A common workaround is to write the superset into a 
temporary table, then query out the subset. This is also the most common way 
to implement paging pre-2005 (in this case, ROW_NUMBER is superfluous). 

DECLARE @startRow INT ; SET @startrow = 50 
CREATETABLE #pgeResults( 
id INT IDENTITY(1,1) PRIMARY KEY CLUSTERED, 
table_name VARCHAR(255), 
column_name VARCHAR(255) 
) 
INSERTINTO #pgeResults(Table_name, column_name) 
SELECT table_name, column_name 
FROM [INFORMATION_SCHEMA].columns 
ORDERBY [table_name], [column_name] 
 
SELECT@@ROWCOUNT AS TotRows 
SELECT Table_Name, Column_Name 
FROM #pgeResults 
WHERE id between @startrow and @startrow + 49 
ORDERBY id 
DROPTABLE #pgeResults 

Looking at the query plan, you can see that your underlying tables are queried 
only once but the I/O stats show us that you take an even bigger hit populating 
the temporary table. 

Table '#pgeResults 
_______________________________________________________________
__________________________________________000000001A9F'. Scan 
count 0, logical reads 5599, physical reads 0, read-ahead reads 
0, lob logical reads 0, lob physical reads 0, lob read-ahead 
reads 0. 
Table 'Worktable'. Scan count 0, logical reads 0, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical 
reads 0, read-ahead reads 14, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical 
reads 0, read-ahead reads 39, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 



The Best of SQLServerCentral.com – Vol.7 

274 
 

(2762 row(s) affected) 
 
(1 row(s) affected) 
 
(50 row(s) affected) 
Table 
'#pgeResults___________________________________________________
______________________________________________________000000001
A9F'. Scan count 1, logical reads 3, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob 
read-ahead reads 0. 

In this case, it would be better to query the tables twice. Maybe some new 2005 
functionality can yield a better solution. 

The COUNT(*) OVER() Approach 

OVER() can also be used with Aggregate Window Functions. For our purposes 
this means we can do a COUNT(*) without the need for a GROUP BY clause, 
returning the total count in our result set. The code definitely looks much 
cleaner and, if your application permits it, you can simply return one dataset 
(eliminating the overhead of writing to a temp table). 

DECLARE @startRow INT ; SET @startrow = 50 
 
;WITH cols 
AS 
( 
SELECT table_name, column_name,  
ROW_NUMBER() OVER(ORDER BY table_name, column_name) AS seq,  
COUNT(*) OVER() AS totrows 
FROM [INFORMATION_SCHEMA].columns 
) 
SELECT table_name, column_name, totrows 
FROM cols 
WHERE seq BETWEEN @startRow AND @startRow + 49 
ORDERBY seq 

Unfortunately this approach has it's own hidden overhead: 

Table 'Worktable'. Scan count 3, logical reads 5724, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical 



The Best of SQLServerCentral.com – Vol.7 

275 
 

reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 

Where did that come from? In this case, SQL Server implements the 
COUNT(*) OVER() by dumping all the data into a hidden spool table, which it 
then aggregates and joins back to your main output. It does this to avoid re 
scanning the underlying tables. Although this approach looks the cleanest, it 
introduces the most overhead. 

I've spent most of today cleaning up and old data-paging proc that is both very 
inefficient and frequently called enough for me to notice it. I've explored 
probably a dozen other approaches to solving this problem before I came up 
with the solution below. For the sake of brevity and because they rest are pretty 
obscure and equally inefficient we'll now skip to the best solution. 

The Holy Grail 

In theory, ROW_NUMBER() gives you all the information you need because it 
assigns a sequential number to every single row in your result set. It all falls 
down, of course, when you only return a subset of your results that don't 
include the highest sequential number. The solution is to return a 2nd column of 
sequential numbers, in the reverse order. The total number of the records will 
always be the sum of the two fields on any given row minus 1 (unless one of 
your sequences is zero-bound). 

DECLARE @startRow INT ; SET @startrow = 50 
;WITH cols 
AS 
( 
SELECT table_name, column_name,  
ROW_NUMBER() OVER(ORDER BY table_name, column_name) AS seq,  
ROW_NUMBER() OVER(ORDER BY table_name DESC, column_name desc) 
AS totrows 
FROM [INFORMATION_SCHEMA].columns 
) 
SELECT table_name, column_name, totrows + seq -1 as TotRows 
FROM cols 
WHERE seq BETWEEN @startRow AND @startRow + 49 
ORDERBY seq 

This approach gives us our page of data and the total number of rows with zero 
additional overhead! (well, maybe one or two ms of CPU time, but that's it) 
The I/O statistics are identical to querying just the subset of records. 



The Best of SQLServerCentral.com – Vol.7 

276 
 

Table 'Worktable'. Scan count 0, logical reads 0, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 

Compare the stats above with the stats and query below (just returning one 
page of data). 

;WITH cols 
AS 
( 
SELECT table_name, column_name,  
ROW_NUMBER() OVER(ORDER BY table_name, column_name) AS seq 
FROM [INFORMATION_SCHEMA].columns 
) 
SELECT table_name, column_name 
FROM cols 
WHERE seq BETWEEN @startRow AND @startRow + 49 
ORDERBY seq 

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead 
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. 
Table 'syscolpars'. Scan count 1, logical reads 46, physical reads 0, read-ahead 
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. 
Table 'sysschobjs'. Scan count 1, logical reads 34, physical reads 0, read-ahead 
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. 

Conclusion 

I have found this approach to be best suited for smaller resultsets from complex 
queries where I/O is the primary bottleneck. Jeff Moden, Peso and others here 
have pointed out that with larger resultsets, the I/O cost you save is more than 
outweighed by the CPU cost. You definitly want to compare different 
approches to find the best solution for your problem. 

My real goal here was to try and figure out a way to avoid unnecessary I/O 
overhead. I am sure that this solution is not the last word on the subject and I 
greatly look forward to hearing your thoughts, experiences and ideas on this 
topic. Thank you all for reading and for your feedback. 



The Best of SQLServerCentral.com – Vol.7 

277 
 

Hierarchies in SQL 
By Gus "GSquared" Gwynne 

Department management hierarchies. Bills of materials. Sales regions and 
offices. Data access levels. All of these and more are things that require storing 
hierarchical data in a database. 

First, any mention of this subject needs to carry with it a mention of Joe Celko 
and his work on "nested sets" hierarchies. He has an excellent article on the 
subject at http://www.intelligententerprise.com/001020/celko.jhtml. 

He s completely correct that nested sets hierarchies are fast to query. The 
problem is, they are complex to add to or update. For relatively static 
hierarchies, like most bills of materials, use his method. Some organization 
charts or chains of command can be done that way as well. 

The other general method of doing hierarchies in relational databases is the 
adjacency model, in which each row has the potential to have a parent in the 
same table. This might be built as: 

create table dbo.Hierarchy ( 
 ID int identity primary key, 
 ParentID int null  references dbo.Hierarchy(ID), 
 Name varchar(100));   

That s a very simple example, but it illustrates the main point, with an ID and 
ParentID. This can be given a natural key, and the Parent column would need to 
be the same data type, but the structure would still be essentially the same. 

This can easily be modified to allow a single level to have more than one parent 
as well as more than one child. (The structure above allows multiple children, 
but only one parent.) I found that particularly useful when I was working for a 
marketing company, and many of the people we marketed for had affiliations 
with multiple companies. In these cases, when a customer placed an order, 
different sets of people would have access to that order data, and the results of 
the marketing campaign, depending on how each order was placed, but the 
individual customer needed access to all of his campaigns in one place. That 
kind of multi-level access is traditionally handled by hierarchies of data access, 
but in this case, it needed to allow multiple parents. 

http://www.intelligententerprise.com/001020/celko.jhtml�


The Best of SQLServerCentral.com – Vol.7 

278 
 

I accomplished this with a structure like the below: 

create table dbo.HierarchyNodes ( 
NodeID int identity primary key, 
 Name varchar(100)); 
go 
 create table dbo.HierarchyRelations ( 
NodeID int not 
nullreferences dbo.HierarchyNodes (NodeID), 
ParentID int not nullreferences dbo.HierarchyNodes (NodeID), 
 constraintPK_HierarchyRelations primary key (NodeID, 
ParentID), 
 constraint CK_NodeNotParent check (NodeID != ParentID));   

I had to add moderately complex triggers to this to make sure no hierarchy was 
created where a level was its own parent or child, regardless of how many 
levels apart, but they performed quite well on such a simple structure. 

Common Table Expressions in SQL 2005/8 make it much easier to resolve 
such a hierarchy, whether it s a one-parent-per child or a many-parent-per-child 
model. 

Books Online has a great example on how to build these and how they work. 
Here s one for the simple hierarchy. 

;withHierarchyCTE (NID, PID)as 
         (select NodeID, ParentID 
         from dbo.Hierarchy 
         where NodeID = @NodeID_in 
         union all 
         select NodeID, ParentID 
         from dbo.Hierarchy 
         innerjoin HierarchyCTE 
               on NID = ParentID) 
 select * 
 from HierarchyCTE   

This assumes an input parameter of @NodeID_in, and will find all children of 
that level of the hierarchy. (I m using the term "node" for each level of the 
hierarchy, since that s how they are often referenced in tree-views and such in 
applications. I hope that doesn t confuse anyone.) 

The CTE can be reversed, and run up the hierarchy, simply by changing the 
relationship in the second part of it, to PID = NodeID, from NID = ParentID. 



The Best of SQLServerCentral.com – Vol.7 

279 
 

Two such CTEs, one up, one down, can be hooked together into a single view 
of the whole structure above and below a level. 

An interesting modification can be made to the CTE to add the level of 
relationship, by adding a Level column to it. 

;withHierarchyCTE (NID, PID, Lvl) as 
       (select NodeID, ParentID, 0 
       from dbo.Hierarchy 
       where NodeID = @NodeID_in 
       union all 
       select NodeID, ParentID, Lvl + 1 
       from dbo.Hierarchy 
       innerjoin HierarchyCTE 
             on PID = NodeID) 
select * 
from HierarchyCTE   

This will give a number that increments by one for each level away from the 
root ID (the one that matches the input parameter), which can be used in Order 
By clauses and such. For an upwards CTE, I d change the increment to -1 from 
+1. 

The disadvantage of these hierarchies, using the adjacency model (ID and 
ParentID), is that they take longer to query than nested sets hierarchies. The 
advantage is that they are very, very fast to add to or update. They are a little 
more complex to delete from in some ways, potentially simpler in others. 

If you want to add a level in an adjacency hierarchy, you just insert it and give 
it the right parent ID, or no parent at all (for a top-level node). If you need to 
move a whole branch of the hierarchy, you just change the parent ID at the 
right point. It s quite simple. 

Say, for example, your company has a Proofreading Department, and in a re-
organization it is being moved from the Marketing Division to the Quality 
Control Division. In a nested sets hierarchy, you have to rebuild the whole 
department, with new ranges for every row. In an adjacency hierarchy, you 
change the parent ID for the department row in the table, and you re done. 

To illustrate this a bit more, here s an example of a nested sets hierarchy table: 

create table dbo.HierarchySets ( 
 RangeStart int not null, 
 RangeEnd int not null, 



The Best of SQLServerCentral.com – Vol.7 

280 
 

 constraintPK_HierarchySets primary key (RangeStart, RangeEnd),   
 constraintCK_RangeValid check (RangeStart < RangeEnd), 
 Name varchar(100));    

For the whole company, you might have a RangeStart of 0 and a RangeEnd of 
1-million. For the Marketing Division (to use the example I mentioned above), 
you might have a RangeStart of 1000 and a RangeEnd of 2000. Proofreading 
could start at 1600 and end at 1650, and there might be ten or twenty rows in 
the table with ranges inside that. (The whole idea is that the parent has a wider 
range than the child, thus, because Marketing starts its range below that of 
Proofreading and ends its range above, it is the parent of Proofreading.) If 
Quality Control is 2001 to 2100, then Proofreading has to have it s Start and 
End changed to some range inside the Quality Control range, and each level 
inside of Proofreading also has to be changed. If Quality Control doesn t have 
enough free space in its range to fit all the ranges for Proofreading, then it also 
has to be moved. 

That makes moves in such a model much more difficult. They can still be done, 
but it involves much more IO and many more transactions, and has to be 
wrapped in a much larger overall transaction so any error can cause the whole 
thing to roll back. That means longer locks on larger parts of the table. Given 
enough rows being moved, it may even result in a relatively long lock on the 
whole table, blocking other transactions and reads. 

To make up for that, selecting from an adjacency involves a number of reads at 
least equal to the number of levels in the hierarchy being queried, and more 
often closer to the number of rows being queried, which can be quite IO 
intensive on complex, large hierarchies, but selecting from a nested sets table 
requires a single-pass, single read, usually of a small range straight from the 
primary key. 

The speed difference and IO difference can be significant on the two. For 
example, I have a hierarchy in one of my databases with 2,700 nodes in it, 
going up to six levels deep. If someone at the top of that hierarchy signs in, it 
takes 11 seconds for my server to resolve the whole hierarchy and determine 
what data that person has access to (this is a security access hierarchy that 
controls much of what is displayed to customers on a web site). That s using the 
adjacency model. Using a nested sets table, that same hierarchy takes less than 
1 millisecond. (This isn t the one with multiple parents. Different company.) 

If this same database didn t have a lot of updates to the hierarchies, I d 
definitely use a straight-up nested sets hierarchy, and have much faster web 



The Best of SQLServerCentral.com – Vol.7 

281 
 

pages. But it does have a lot of updates, sometimes several per minute, 
sometimes several at the same time. Each nested sets rebuild takes about 20-30 
seconds to finish, and locks the table pretty aggressively while it s running. 

So, I came up with what I m calling a hybrid hierarchy. The table looks 
something like this: 

create table dbo.HierarchyHybrid ( 
ID int identity primary key, 
ParentID int null references dbo.HierarchyHybrid(ID), 
TopParentID int null references dbo.HierarchyHybrid(ID), 
RangeStart int null, 
RangeEnd int null, 
TempRangeStart int null, 
TempRangeEnd int null, 
 constraintCK_RangeValid check (RangeStart < RangeEnd), 
 Name varchar(100));   

When a row is inserted, it has an ID and (if not a top level) a ParentID, but no 
Range data. When a row with Range data is updated (ParentID or TopParentID 
changed), the RangeStart and RangeEnd columns are set to null. 

Additionally, I have the insert statement figure out what the top level of the 
new row would be. If the row has no parent, it puts in its own ID as the 
TopParentID, otherwise, it resolves what level above it has a null ParentID, 
regardless of how many levels that is removed from it, and puts that in there. 
With the right indexes on TopParentID, I ve sped up the resolution of 
adjacency queries by up to 80%, since the recursive portion of the CTE can 
reference that column and greatly narrow down the number of rows it has to 
scan to resolve the query. (Your mileage may vary. Some queries are sped up a 
lot, some barely at all.) 

Then, every few minutes, I have a job that looks to see if any rows exist where 
RangeStart is null. If it finds any, it goes through the hierarchy and set the 
values in TempRangeStart and TempRangeEnd. Once those are all set, it 
updates RangeStart and RangeEnd. That way, I don t have partial sets and all of 
it gets done at once, which has resulted in better average performance. 

When a hierarchy needs to be resolved, the code checks if any levels exist in 
that hierarchy that have null RangeStart (using the TopParentID), and uses the 
adjacency method of resolution if it finds any. If not, it uses the nested sets 
method. The code for that looks something like this: 



The Best of SQLServerCentral.com – Vol.7 

282 
 

create function [dbo].[udf_Hierarchy] 
 (@NodeID_in int) 
 returns table 
 as  
 return 
       (with 
       TopSet (SS, SE) as -- Get the range for the requested 
node 
             (select RangeStart, RangeEnd 
             from dbo.HierarchyHybrid 
             where ID = @NodeID_in), 
       Sets (RangeStart, RangeEnd, NodeID) as-- Nested Sets 
Query 
             (select RangeStart, RangeEnd, ID 
             from dbo.HierarchyHybrid 
             innerjoin TopSet 
                   on RangeStart between ss and se 
                   and RangeEnd between ss and se), 
       Adjacency (NodeID, ParentID) as -- Adjacency Query 
             (select 0, ID, ParentID 
             from dbo.HierarchyHybrid 
             where ID = @NodeID_in 
             andexists 
                    (select* 
                    from dbo.HierarchyHybrid h2 
                    where h2.TopParentID = 
HierarchyHybrid.TopParentID 
                    and RangeStart is null) 
             union all 
             select h3.ID, h3.ParentID 
             from dbo.HierarchyHybrid h3 
             innerjoin Adjacency 
                   on h3.ParentID = Adjacency.NodeID) 
       select NodeID 
       from Sets 
       union 
       select NodeID 
       from Adjacency);   

Using this method, I get a compromise. It takes a little longer to resolve a 
hierarchy than a pure nested sets method, up to about 8 milliseconds on some 
of the bigger ones, but updates and moves are fast, and can show on the web 
page immediately. 

After any changes, a hierarchy takes a few seconds to resolve until the range 
data on it gets rebuilt, of course, but customers and users have been okay with 
that. It s not usual for any given customer to change their hierarchy more than a 
couple of times per week, and changing one hierarchy doesn t negatively 
impact any other hierarchy. 



The Best of SQLServerCentral.com – Vol.7 

283 
 

I don t know if this will be of use to anyone else, but for the situation I have, it 
s been very, very valuable, so I thought I d share it. Without Joe Celko s work 
on nested sets, this would never have been built, so do read the article I linked 
to at the beginning. I’m definitely grateful to him for his work. 

ROW_NUMBER(): An Efficient 
Alternative to Subqueries 
By Francis Rodrigues 

Introduction 

SQL Server 2005 offers an array of ranking and windowing functions that can 
be used to evaluate the data and only return appropriate rows.  For instance, a 
development cycle of a product may include hundreds of releases, and those 
releases may have versions associated with them: a "0" version with its many 
minor versions, a "1" version with its minor versions, etc.  If the history of a 
particular product's releases is kept, then analysis can be done to see how far a 
version is developed before it is released.  An ORDER BY clause alone cannot 
fulfill this need because the query would most likely still return the entire 
history of the product, not necessarily the last release of every version. The 
code is also available for download. The name of the file is 
RowCountScenario1-CodeDownload.sql. 

Scenario 1 Versioning 

In order to demonstrate the usage of the ROW_NUMBER() windowing 
function, I started with Microsoft's AdventureWorks database.  In particular, I 
used the data in the Production.ProductCostHistory table.  The products in this 
table are identified by the ProductID column; this is a foreign key to the 
Production.Product table.  Using the Production.ProductCostHistory table, I 
mocked up some data to create versions for each Product in the table.  I used a 
random number generation process to create attributes called Version, 
MinorVersion and ReleaseVersion for each product. These attributes are meant 
to show detailed information about the product. Together 7.0.59 represents that 
the 7th version of the product is currently being used, a minor version represents 
the iteration of the version, and the release version of this particular installation 
is 59. The next iteration of the product's life cycle could result with 7.2.19.  I 



The Best of SQLServerCentral.com – Vol.7 

284 
 

also used the existing StandardCost to create different costs for each of the 
Versions, to create some sense of value for the particular Version. 

I created a table called Production.ProductVersion with the ProductID, Version, 
MinorVersion and ReleaseVersion defined as the primary key and the 
StandardCost as an attribute.  I inserted the mocked up data generated by the 
code into this table to model a simple product version/cost history. 

  CREATE TABLE Production.ProductVersion 
  ( 
        ProductID int NOT NULL, 
        Version int NOT NULL, 
        MinorVersion int NOT NULL, 
        ReleaseVersion int NOT NULL, 
        StandardCost numeric(30, 4) NOT NULL, 
        CONSTRAINT PK_ProductVersion PRIMARY KEY CLUSTERED 
        ( 
              ProductID ASC, 
              Version ASC, 
              MinorVersion ASC, 
              ReleaseVersion ASC 
        ) 
  );   

I used the following code to populate the table with randomized data. I created 
the data using a common table expression (CTE) and inserted the data into the 
table after it was generated.The data is based on the 
Production.ProductCostHistory table. 

A sample of the code can be found on SQLServerCentral.com. 

The ABS(CHECKSUM(NEWID())) is utilized as the random number 
generator; the modulus operator provides the upper bound for the random 
number that was generated. The NEWID() function is guaranteed to generate a 
globally unique identifier for each row. The GROUP BY clause is used to 
avoid any Primary Key constraint violations that might be encountered. 

The purpose of this exercise is to avoid the complexity of certain code by using 
the ROW_NUMBER() windowing function. Suppose you are required to return 
only the latest version of a Product with its associated MinorVersion, 
ReleaseVersion and StandardCost. The following query will not return the 
correct result set. 



The Best of SQLServerCentral.com – Vol.7 

285 
 

  SELECT 
     ProductID, 
     MAX(Version) AS Version, 
     MAX(MinorVersion) AS MinorVersion, 
     MAX(ReleaseVersion) AS ReleaseVersion, 
     MAX(StandardCost) AS StandardCost 
  FROM Production.ProductVersion WITH (NOLOCK) 
  GROUP BY ProductID;   

In fact, this query violates integrity of the rows of data in the table. It simply 
returns the maximum Version, the maximum MinorVersion, the maximum 
ReleaseVersion and the maximum StandardCost of a particular Product. This is 
an easy and tempting trap to fall into. Compare the results displayed in Figure 2 
and Figure 3. The actual data that is in Production.ProductVersion is in Figure 
1.  

The following sample query captures the actual requirements, and returns the 
correct result, but it is long and convoluted. 

This query utilizes nested subqueries in order to ensure the integrity of each 
row. The first subquery (lines 117-25 in the code download) provides the 
maximum Version for each Product. The second subquery provides the 
maximum MinorVersion for the maximum Version of each Product. The 
subsubquery in the WHERE clause ensures that the MinorVersions and the 
Versions match. The third subquery,  

  SELECT MAX(ReleaseVersion) 
  FROM Production.ProductVersion pv4 WITH (NOLOCK)  
  WHERE pv4.ProductID = pv.ProductID 
     AND pv4.Version = ( 
                       SELECT MAX(Version) 
                       FROM Production.ProductVersion pv2 WITH 
(NOLOCK) 
                       WHERE pv2.ProductID = pv.ProductID 
                       ) 
     AND pv4.MinorVersion = ( 
                          SELECT MAX(MinorVersion) 
                          FROM Production.ProductVersion pv3 
WITH (NOLOCK) 
                          WHERE pv3.ProductID = pv.ProductID 
                             AND pv3.Version = ( 
                                               SELECT 
MAX(Version) 
                                               FROM 
Production.ProductVersion pv2 WITH (NOLOCK) 
                                               WHERE 
pv2.ProductID = pv.ProductID 



The Best of SQLServerCentral.com – Vol.7 

286 
 

                                               ) 
                          )   

(lines 127-46 in the code download) provides the maximum ReleaseVersion for 
the maximum MinorVersion of the maximum Version of each Product. Once 
again the subqueries ensure that only complete rows of data are retrieved. If 
this logic sounds too complicated, that is simply because it is. The estimated 
subtree cost for this query turns out to be 0.583005. This includes several 
Clustered Index Scan and Seek operations. The query plan is displayed in 
Figure 6. The complexity of the subquery approach can increase if the 
requirements change. 

A simplified approach uses the ROW_NUMBER() function as shown below. 

  WITH RowExample1 
  AS 
  ( 
     SELECT ROW_NUMBER() OVER(PARTITION BY ProductID 
                       ORDER BY ProductID, 
                          Version DESC, 
                          MinorVersion DESC, 
                          ReleaseVersion DESC 
       ) AS MaxVersion, 
       ProductID, 
       Version, 
       MinorVersion, 
       ReleaseVersion, 
       StandardCost 
     FROM Production.ProductVersion pv WITH (NOLOCK) 
  ) 
  SELECT ProductID, 
     Version, 
     MinorVersion, 
     ReleaseVersion, 
     StandardCost 
  FROM RowExample1 
  WHERE MaxVersion = 1 
  ORDER BY ProductID;   

The result set for this query looks like the Figure 3. 



The Best of SQLServerCentral.com – Vol.7 

287 
 

 

Figure 1: Sample from Production.ProductVersion 

 

Figure 2: Sample from incorrect query 

 

Figure 3: Sample from properly implemented query 

The PARTITION BY clause allows a set of row numbers to be assigned for all 
distinct Products. When a new ProductID is encountered, the row numbering 
will start over at 1 and continue incrementing for each row with the same 
ProductID. The row number will be assigned according to the sort order of the 
columns that you specify in the OVER clause's ORDER BY clause. The 
estimated subtree cost for this improved query is 0.039954. This query has only 
one Clustered Index Scan operation. The query plan is displayed in Figure 7. 

With the OVER clause, the ROW_NUMBER() function can efficiently assign a 
row number to each row in a query. The fact that I've ordered the partitions by 
ProductID and then in descending order by Version, MinorVersion, and 
ReleaseVersion, guarantees the maximum version will be in the first row of 
each ProductID partition. This allows me to use a simple WHERE MaxVersion 
= 1 predicate in place of the convoluted sub-query logic in the previous sample 
query. 



The Best of SQLServerCentral.com – Vol.7 

288 
 

To test the effects of indexing on difference between the two methods, I used 
the following table. 

  CREATE TABLE Production.ProductVersion2 
  ( 
     ProductID int NOT NULL, 
     Version int NOT NULL, 
     MinorVersion int NOT NULL, 
     ReleaseVersion int NOT NULL, 
     StandardCost numeric(30, 4) NOT NULL, 
  );   

I used the following query to generate a large set of randomized data to 
compare the estimated query costs for different record size sets. 

The sample of the code can be found on SQLServerCentral.com. 

The following charts show the estimated query costs for different row sizes. I 
chose to start at 1,000 because there are 286 distinct ProductIDs, starting at 100 
would have eliminated too many rows. 

The following figure shows the estimated query costs for the 
Production.ProductVersion. The subquery implementation actually took less 
than 1 second to complete where as the ROW_NUMBER() implementation 
took about 2 seconds to complete for 1,000,000 rows. 

Row 
Size 

Subquery 
Implementation 
Cost 

ROW_NUMBER() 
Implementation 
Cost 

1000 0.0652462 0.0355736 
10000 0.238573 0.673282 
100000 2.2258 5.97198 
1000000 14.3881 83.7228 

Figure 4: Indexed estimated query costs 

The following figure shows the estimated query costs for the 
Production.ProductVersion2. The subquery implementation took 43 seconds to 
complete where as the ROW_NUMBER() implementation took 5 seconds to 
complete for 1,000,000 rows. 



The Best of SQLServerCentral.com – Vol.7 

289 
 

Row 
Size 

Subquery 
Implementation 
Cost 

ROW_NUMBER() 
Implementation 
Cost 

1000 0.0355736 0.225896 
10000 1.6397 0.673282 
100000 44.1332 5.97202 
1000000 448.47 83.7229 

Figure 5: Non-indexed estimated query costs 

These results may differ according to the hardware used to run the queries. A 
quick look at the ROW_NUMBER() implementation column shows that 
indexing does not significantly impact this implementation's query cost where 
as it is very important to the subquery implementation's query cost. 

Scenario 1 Change in Requirements 

Suppose the requirement changes and you need to grab the maximum 
MinorVersions for every (ProductID, Version) combination. Changing the 
subquery implementation has a large overhead, namely breaking down the 
logic. The subquery approach looks like this with the new set of requirements: 

The sample of the code can be found on SQLServerCentral.com. 

The new requirements actually eliminate some of the nested subqueries. The 
estimated query cost, however, does not change significantly for 
Production.ProductVersion. 

This new change requires only a small modification to the ROW_NUMBER() 
implementation. This is what the ROW_NUMBER() implementation looks like 
for the new set of requirements: 

The sample of the code can be found on SQLServerCentral.com. 

In this example, the row numbers are partitioned according to both ProductID 
and Version. The WHERE clause is still valid here because the maximum 
MinorVersion for each (ProductID, Version) combination is guaranteed to be 
the first row.  The estimated query cost did not change greatly for the modified 
code.  The readability, manageability and the efficiency of the function make it 
a better choice than the subquery approach. 



The Best of SQLServerCentral.com – Vol.7 

 

Estimated Query Plans 

 

Figure 6: Subquery approach 

 

Figure 7: ROW_NUMBER() approach 

Conclusion 

These examples show the critical role of indexing in the subquery approach.  
The ROW_NUMBER() implementation is far more readable and therefore 
easier to maintain.  It also remains relatively independent of indexing even for 
large amounts of data.  Since the function takes advantage of the SQL Server's 
ability to sort records, most queries that need to uphold a level of sequencing 
should at the very least explore its implementation.  The sorting itself can 
greatly reduce or replace all together the extra logic necessary to enforce the 
integrity of data at the row level.  The readability of the function's 
implementation also plays a key role in its manageability.  Modifying the code 
with the ROW_NUMBER() implementation is easy because the logic is 



The Best of SQLServerCentral.com – Vol.7 

291 
 

performed in easy to spot areas and is performed once, whereas in the subquery 
the logic appears in several places and could be repeated. 

There Must Be 15 Ways to Lose Your 
Cursors... part 1, Introduction 
By R.BarryYoung 

A long, long time ago, it was not possible to do everything in the SQL language 
that a database developer or a DBA might need to do with just set-based SQL. 
And thus was born the Cursor. The bastard love-child of the declarative 
relational database language SQL and her first wild fling with a much more 
experienced and confident procedural programming language (whose identity is 
still unknown), the Cursor arrived in the early 80's amid promises and 
predictions to fix all manner of ills in the house of SQL. And at first, that's how 
it appeared. Anything that set-based SQL couldn't do on her own, her erstwhile 
son would step right in and handle for her. In fact he handled so many things 
for her, that she became convinced that she could not get by without him. 

But then she began to notice some things that disturbed her. For one thing, he 
was just a little bit slow and a whole lot lazy. He never hurried anywhere; he 
always moved just one step, then another. Plus, he didn't seem capable of doing 
more than one thing at a time. Then there was the way that he did his work. He 
didn't just do it, he would lay down tarps, drop cloths, tools and toolboxes 
everywhere, until the whole room (and then some) was practically unusable. 
And this condition would persist far longer than it should because he was so 
slow in his work. 

Which was ironic because he ultimately only ever did one thing: apply duct 
tape. No matter what the task, chore or repair was, he would just duct tape over 
it. Instead of replacing broken windows, he would duct tape them back 
together. When the siding needed repair, he duct taped it. Leaky pipes? Duct 
tape was the answer. Lost shingles? More duct tape. 

"My way is cheaper" he would say when she asked him about it. "Why invest 
all of that time and money in new windows, pipes or shingles when with a little 
duct tape, we can be done now?" And because she didn't know about these 
things, she had to accept his word on it. But she had her doubts. First, his 
repairs didn't seem to work very well. The pipes still leaked some, as did the 
windows which she could hardly see out of. Secondly, she suspected that these 



The Best of SQLServerCentral.com – Vol.7 

292 
 

cheap repairs and constructions were actually costing her more in utility bills 
and damage to things around them than they were saving. 

And then there was the appearance. The once beautiful house of SQL, 
conceived, designed and built to widespread acclaim and admiration, was now 
a shocking eyesore. With its obscured windows, sagging fences, and 
omnipresent patchwork of duct tape, it looked not so much like a home as it did 
a duct tape shelter with bits and pieces of a real house randomly attached. 

However, over the years she had been steadily learning how to do these things 
herself and now, not only did she realize that she did not need him anymore, 
she also knew for sure that there were better ways to do these tasks. In fact, the 
best thing for her would be to redo every single thing that he had done. But 
how to do it? He still insisted on doing all of the repairs himself. And after 
almost thirty years he was still living in her basement and showed no sign of 
either getting a job or moving out. "Well," she thought to herself, "there are 
ways of getting rid of uncooperative children..." 

This series of articles intends to show you not only how to get rid of the 
Cursors that you may currently have, but also how to avoid ever having to use 
them in the first place. Up through SQL Server 2000, I would have agreed with 
most people that there were some things that Cursors were necessary for but, 
with the release of SQL Server 2005, all of those reasons have disappeared in 
the face of the new features and capabilities that it provides. Specifically, the 
new features that have enabled this elimination are: 

• Large Strings(VARCHAR(MAX), etc)  

• Windowed Aggregate Functions (especially ROW_NUMBER())  

• FOR XML PATH  

As we progress in this series, we will see how these three additions have 
greatly extended the reach of set-based SQL. 

And although I have only mentioned Cursors so far, the same applies equally to 
WHILE loops as well. What I will be showing you in this series of articles is 
how to use the new and old features of Transact-SQL to both create and convert 
SQL routines that are faster, smaller, cleaner, clearer and more supportable 
without the use of Cursors or While loops. 

  



The Best of SQLServerCentral.com – Vol.7 

293 
 

What's Wrong With Cursors Anyway? 

First, they are slow and resource intensive. Many of them will create a table in 
tempdb and copy the entire dataset into it, which can cause resource problems. 
Those that do not are frequently forced to use single-record retrieval methods 
that can be much slower. In either event, the Cursor is forced to process the 
returned rows one at a time, which means a WHILE loop and that adds its own 
performance problems (the repeated execution overhead of multiple statements 
for each row). Additionally, there is locking overhead to maintaining this single 
record state in a database that may also have contending DML statements going 
on at the same time. 

Secondly, they can slow other processes down as well. Using more resources 
(CPU, memory, tempdb, etc.) means that less is available for other uses, and 
using them for a longer time also means that they are unavailable to others for a 
longer time. Still, further, the additional locking that Cursors employ can result 
in blocking other processes too. 

Thirdly, Cursors and While loops are blatantly procedural code in SQL, a 
language that was designed from the start to be a declarative language. What's 
the difference? Procedural languages, the more traditional approach to 
programming, as seen in VB, C#, Java, etc., consists of writing code in the 
form of procedures. That is, an ordered series of steps that individually tell the 
computer what to do and collectively tell it how to do it. Declarative languages, 
on the other hand, simply describe the results that are to be returned, leaving 
the optimizers the freedom to determine how best to do it. 

For instance, consider the question that a cook might ask "What food should I 
make?" The procedural answer might be: 

Get butter and sugar  

Cream them together  

Add vanilla and eggs  

Stir  

Add flour, salt and baking powder  

Etc., etc. ...  



The Best of SQLServerCentral.com – Vol.7 

294 
 

On the other hand, the declarative answer would be: 

Cookies, with chocolate chips  

Implemented correctly, declarative code is generally much more concise than 
procedural code. Obviously, you don't want to use procedural answers where a 
declarative one will do. 

Fourthly, SQL routines with Cursors and loops are, in general, harder to read, 
harder to understand, and harder to maintain and support. Is this just personal 
preference on my part? That's a valid question, but I think that the answer is no. 
First, look at our abstract examples above. You may notice something 
interesting about the procedural example; it never tells us that it is making 
chocolate chip cookies. That's because procedural code tells us how to do 
something, but not what it is that we are doing. For this reason alone, 
declarative code tends to be easier to read and understand. Now this single 
example may not be convincing, especially since it does not involve actual 
code of either kind, however, we will have many opportunities in this series to 
directly compare functionally identical procedural SQL with declarative SQL 
that I think will demonstrate this beyond any reasonable doubt. 

Finally, you do not need them. Seriously. Let me say that again so that there is 
no uncertainty: As of SQL Server 2005, the only reason to use Cursors is if you 
actually want to slow down your code (for instance to do a big update in 
chunks). Otherwise there is just no reason that I can see to use them, and many 
reasons not to. 

Why Do People Still Use Cursors? 

Whenever I start to talk about the problems with cursors there are two 
questions that always come up. The first is "If Cursors are so bad, then why do 
they exist?" The answer to that question is historical, which I believe I have 
covered adequately above. 

The second question is "If Cursors as so bad, then why do people keep using 
them?" That's an excellent question because no matter how often I tell SQL 
developers who I am training not to use Cursors they invariably do, and then 
end up calling me desperately to fix the problems they have caused. In fact this 
tendency is in my experience so powerful that it seems like an irresistible force. 
In short, Cursors and While loops attract developers the way that a black hole 
attracts matter. The cause of this is, I believe, due to a combination of reasons. 



The Best of SQLServerCentral.com – Vol.7 

295 
 

First, I believe that many SQL practitioners simply do not realize the problems 
with cursors or may even come from an environment like Oracle where they 
perform somewhat better. One of the goals of this series is to remedy that 
through information and education. 

Secondly, I think that all developers and, indeed, almost everyone in the 
computer field is familiar with procedural thinking and by implication 
procedural programming. This is much less so for declarative programming. 
Even if we haven't been trained as a programmer, our job and career 
environment are saturated with procedural thinking and procedural 
perspectives. This collective procedural ambiance leads us to see procedural 
programming as a natural and straight-forward thing. 

If you want some confirmation of this all you have to do is to look on the some 
of the technical support forums. It's amazing to me how many posters seeking 
help can only answer the question "What are you trying to do?" with a series of 
steps instead of an actual description of the results that they want. They have 
become stuck in a procedural mindset where everything can be truly described 
only by using an ordered series of imperative instructions. In this mindset, end-
state descriptions (declarations or descriptions of desired results) are seen as 
inherently incomplete because they do not describe how to get to that end-state. 

Thirdly, there is a phenomenon I have experienced as a (non-SQL) programmer 
that I like to call "Heads-Down Programming" or "Design-less Coding". When 
faced with a complicated task, the developer just writes a big loop to process 
each input row and then inserts a line or block of code for each requirement of 
their task. This is the essence of mediocre programming, and every developer 
has likely done it at one time or another. Why? Various reasons to explain this 
that I have heard (or have given myself) include: 

"Because I am having difficulty figuring out the task or the tools and I need 
to get moving on it"  

"Because I need to finish my tasks quickly and I do not have time to think 
about them"  

"Because I am only being measured by my boss on how quickly I finish my 
tasks and problems that might arise downstream in testing, QA or 
production, are not counted against me"  

"Because I am not very good at this, yet"  



The Best of SQLServerCentral.com – Vol.7 

296 
 

"Because I don't really care about the quality of the work"  

"Because I do not know any better" (more common than you may think)  

Thus, Cursors and While loops serve as a way for a developer to get their job 
"done" (sort of) as quickly as possible. They do not have to try to figure out 
what is the correct way or the best way to do something, just meet the 
functional requirements and move on. The problem here though is that they are 
reducing the cost of their initial development by adding serious or even severe 
costs to testing, QA, production, support, maintenance and upgrading. 
Developing in this way only makes the initial development easier at the 
expense of every other stage of the software lifecycle. And this only really 
works in procedural programming where you can look at things one small step 
at a time in isolation and do not ever have to look at the big picture or really 
understand what it is that you are trying to do in a purposeful context. 

This is an approach that is not readily available to the declarative developer, 
because the individual pieces of a query cannot be considered in complete 
isolation from each other. The relationships between the different table sources, 
between the table sources and the output columns, between the output columns 
and the ordering columns and between the Group By clause and the rest of the 
query are all very significant. This means that you cannot do declarative 
programming without thinking about it. 

The fourth reason is that because SQL is a domain-specific or special purpose 
language many of the developers who use it never become truly proficient in it 
because they do not consider it to be a central part of their expertise. I have 
observed this many times, even among developers who spend 50% or more of 
their time developing in SQL over several years. Consequently, they are 
frequently confronted with situations that could be easily solved with good 
declarative, set-based SQL, but are unfamiliar with the techniques or features 
that would allow them to do so. This leads them to fall back to what they knew 
before that started using SQL; procedural techniques and algorithms.  

Homework: Exercise and Example 

I know that some readers may be disappointed by the lack of code so far, so I 
will leave you with the following example and problem (don't worry, it's easy): 

Declare @dummy int 
Declare @X int 
Set @X = 0 



The Best of SQLServerCentral.com – Vol.7 

297 
 

 
Declare XCursor Cursor LOCAL FORWARD_ONLY For  
 Select 1 
 From master.sys.columns c1 
 Cross Join master.sys.columns c2 
 
OPEN XCursor 
 
FETCH NEXT FROM XCursor Into @Dummy 
WHILE @@Fetch_Status = 0 
 Begin 
 Set @X = @X + 1 
 FETCH NEXT FROM XCursor Into @Dummy 
 End 
Print @X   

First, copy and run this procedure, measuring its run-time on your system. 
Next, figure out what this Cursor procedure really does (remember, that is part 
of the problem with procedural code). Now write a faster version that 
accomplishes the same task without any Cursors or loops. And don't worry if 
you find the homework difficult, we will cover it in detail in part two. 

Coming in Part 2: "Just Put It in a Set, Brett" 

We will pickup in part 2 with the simpler cases of cursor and loop based code 
and how to convert them to set-based or declarative SQL. I will show a 
straight-forward method for converting simple Cursor and While loop based 
procedures to declarative queries. Then, we will look at several slightly more 
complex instances and see how each can be easily rewritten using this 
technique. 

My thanks to Jeff Moden 
(http://www.sqlservercentral.com/Forums/UserInfo85377.aspx) for his 
comments and criticisms in the preparation of this article. 

R. Barry Young is a Principal Consultant for Proactive Performance Solutions 
Inc (http://www.proactiveusa.com/) a Microsoft Gold Certified Partner, located 
in northern Delaware. He has been programming for over 35 years, a computer 
professional for 30 years, a professional consultant for 25 years, a Systems 
Performance Analyst for 20 years and a Database Consultant for the last 15 
years. He estimates that he has written between 800,000 and 1,000,000 lines of 
procedural code by now and thinks that he is finally starting to get the hang of 
it. 

http://www.sqlservercentral.com/Forums/UserInfo85377.aspx�


The Best of SQLServerCentral.com – Vol.7 

298 
 

Generating Insert Statements 
By Oleg Netchaev 

There are occasions when on the top of scripting the database tables, insert 
statements for data in these tables are also needed. Consider, for example, the 
following scenario. During the development phase of the project the database 
objects are designed and created in the development database. Some of the 
records inserted into tables are needed for initial deployment of the project to a 
QA environment. These could be configuration related records or default 
records for catalog tables. The deployment database script should therefore 
include not only the code for the creation of the objects, but also a number of 
insert statements for the data. Unfortunately SQL Server Management Studio 
does not provide the option to "include data" along with object definitions 
when scripting the database. 

There are numerous readily available scripts which will generate insert 
statements when executed, but typically they suffer from the cursor illness. 
Cursors had their place back in the last millennium, but the time has come to 
get rid of them and start using set-based SQL instead. With introduction of new 
features in SQL Server 2005, such as ranking functions and CTEs, justification 
of the cursors usage had become even more difficult than before. There are 
excellent articles by R. Barry Young titled “There Must Be 15 Ways To Lose 
Your Cursors...” 
(http://www.sqlservercentral.com/Authors/Articles/RBarry_Young/659055/) 
published by this site, please read them if you are not convinced. 

Let's first consider the design of a typical query to generate insert statements 
from the specified table (we will come up with a different approach later in the 
article): 

Define a string (nvarchar) variable which will hold the statement defining the 
shape of insert.  

Query the object containing column-related information about the table. For 
example, information_schema.columns view can be queried to retrieve one 
record per column in the table, describing such column's ordinal position, data 
type, name, and length.  

Open cursor and start looping through the records retrieved by this query.  

http://www.sqlservercentral.com/Authors/Articles/RBarry_Young/659055/�


The Best of SQLServerCentral.com – Vol.7 

299 
 

For each step of the cursor loop add appropriate values from the cursor's record 
to the string variable. This means that there has to be a logic implemented via 
select case to figure whether to surround the data by the quotes depending on 
the column's type. Additionally, presence of the single quotes in the data needs 
to be handled.  

Once the variable is populated, execute it against the table to generate the insert 
statements.  

The logic described above seems to be a little bit more complex than it deserves 
to be. Allow me to demonstrate it by a very simple example. Suppose we have 
a table named t with one int and one nvarchar column in it named c1 and c2 
respectively. We will insert a couple of records in it and then check how the 
insert-generating statement will look: 

  create table t(c1 int not null primary key clustered, c2 
varchar(50) not null); 
  go 

  insert into t(c1, c2) values (1, 'What''s the deal with 
magnets?'); 
  insert into t(c1, c2) values (2, 'This is a trap, isn''t 
it?'); 

  -- I will omit the cursor part, and will just spell out the 
final statement: 
  set @sql = 
       'select ''insert into t(c1, c2) values (''' + 
       ' + cast(c1 as nvarchar(10)) + '', '''''' + replace(c2, 
       '''''''', '''''''''''') + '''''');'' from t;'; 
  -- at this point we can execute this rather unattractive 
@sql: 
  exec sp_executesql @sql; 
  -- which will produce the following output: 
  insert into t(c1, c2) values (1, 'What''s the deal with 
magnets?'); 
  insert into t(c1, c2) values (2, 'This is a trap, isn''t 
it?');   

The insert-generating method described above is clearly error prone. Let's come 
up with the different approach based on the simple fact that the database 
engine, just like anything else related to data storage, does not store the values 
as we see them in the end. It can care less about presence or absence of single 
quotes, unicode characters etc because it stores everything in zeroes and ones 
regardless of the data types. The hex representation of any value is therefore 
always available. Consider the following snippet: 



The Best of SQLServerCentral.com – Vol.7 

300 
 

  use AdventureWorks; 
  go 
  set nocount on; 

  declare @t table (col1 int not null, col2 varchar(30)); 
  insert into @t (col1, col2) 
  values 
  ( 
      0x00000001, 
      
0x57686174277320746865206465616c2077697468206d61676e6574733f 
  ); 

  set nocount off; 

  select * from @t; 
  go   

Here is the result: 

  col1        col2 
  ----------- ----------------------------- 
  1           What's the deal with magnets? 

(1 row(s) affected)   

Exploiting the fact that insert statements can specify exact binary values rather 
than spell them out in the "convenient for people" format, the outline for 
generating the insert statement routine is as follows: 

1. Declare nvarchar(max) variables to hold the parts of the insert-
denerating statement.  

2. Populate the variables by the means of a single select statement 
querying the information_schema.columns view. When selecting, cast 
values to varbinary and use the not excessively documented, but 
nevertheless available function named master.dbo.fn_varbintohexstr 
to translate the binary values to their respective hex string 
representation.  

3. Execute resulting script to select from the specified table, which will 
generate insert records.  

The advantage of this method is two-fold: 

1. There is no need to use a cursor.  



The Best of SQLServerCentral.com – Vol.7 

301 
 

2. There is no need to worry about data formatting and single quotes 
handling.  

Here is the script implemented as a stored procedure. The script is not fast, it 
takes almost an entire second to generate 2679 insert statements on my box 
with Windows XP SP3 2 GB of RAM and Intel E6750 @ 2.66 GHz CPU, but it 
works well. 

This code is available at www.sqlservercentral.com 

I hope that someone will find this method useful. It works as written in SQL 
Server 2005, and it will also work in 2000 version with some restrictions 
related to varchar size limitations - there is no equivalent of varchar(max), 
meaning that there is no clean way to declare a variable of varchar type greater 
than 8,000 characters in length in the SQL Server 2000. 

Oleg Netchaev 

Dynamic SQL Merge 
By Glen Schwickerath 

Most seasoned database professionals have a "bag of tricks" collection of useful 
SQL scripts and stored procedures which are utilized to quickly solve common, 
but time-consuming problems. One of these tools, which was introduced in 
SQL Server 2008, is the T-SQL MERGE statement. 

Have you ever been presented with one of the following database requests? 

1. Table B is not in sync with Table A. Find the column differences and 
update Table B to match. 

2. There are (insert number here) rows missing from Table B. Find them 
in Table A and insert them. 

3. The rows in Table B from last Tuesday are wrong. Synchronize them 
with Table A. 

These are common scenarios that all database professionals are confronted with 
in the course of our work lives. These problems are fairly easy to solve with a 



The Best of SQLServerCentral.com – Vol.7 

302 
 

bit of skill using common SQL coding techniques. The issue, however, is that 
we are usually provided these "opportunities" at the most inconvenient times 
(e.g., five minutes before quitting time) or these situations place additional 
stress on the DBA because the problem has to be fixed "right now" or "ASAP" 
and there is little or no room for error. 

Fortunately, SQL Server 2008 provides a new statement, "MERGE", which 
goes a long way towards solving the common database issues. The general 
syntax of the MERGE statement is as follows (Please consult MS Books Online 
for detailed syntax information on MERGE - 
http://www.sqlservercentral.com/Authors 
/Articles/RBarry_Young/659055/

MERGE "to a target server" 
USING "data from a source server" 
WHEN MATCHED "update something" 
WHEN NOT MATCHED ON SOURCE "insert something" 
WHEN NOT MATCHED ON TARGET DELETE 

). 

After a bit of experience coding this statement, you can become fairly 
proficient at developing the code necessary to use this tool to solve the 
problems identified above. 

What I wished to do was to create a process which would dynamically generate 
the necessary MERGE syntax to synchronize one table to another. 
Additionally, I wished to be able to synchronous a table on a SQL Server target 
server from a heterogeneous source (e.g., MS Access, DB2, Sybase, etc.) 

Certainly, there are a variety of methods that could be employed to solve this 
problem. I commonly advise people that there are usually several solutions to 
any problem. A seasoned professional is able to analyze and choose the 
appropriate solution for any given problem. What I desired was a stored 
procedure that could be executed quickly and without a great deal of coding 
effort. SSIS packages work great for many ETL tasks, but take time to develop. 
Coding SQL scripts, even a MERGE statement, can be error-prone, especially 
when the pressure is on to complete a data correction task quickly. The Import 
Wizard works great in situations where the target table can be truncated and re-
populated in total, but it is not always practical to do this; especially in online 
environments. What I envisioned for a solution was a DBA tool which could be 
quickly executed to synchronize a small-to-medium sized table. 

http://www.sqlservercentral.com/Authors�


The Best of SQLServerCentral.com – Vol.7 

303 
 

The result of this effort is a stored procedure which dynamically generates the 
necessary MERGE syntax using schema information derived from the source 
table. The solution allows for a subset of the impacted data to be synchronized 
via a "where clause" and also output debugging and impacted row information 
by primary keys. Additionally, the tool would have the option to parse and 
generate the MERGE statement, but display it without actual execution. The 
result is the "usp_merge" stored procedure. 

Procedure Call Syntax (Code Sample 1) 

Code Sample 1 

Illustrates a sample call to the usp_merge stored procedure.  

I'd like to first mention a couple of general items regarding usage. This first 
example is a SQL Server->SQL Server direct database table merge. The 
@SrcServer variable is left NULL because the stored procedure is executed 
locally on the server. Secondly, the @TgtTable variable is left NULL and the 
stored procedure will default its value to @SrcTable. 

Execution Result 1 

Displays both the debugging output and the result of the MERGE statements 
OUTPUT command. The @Debug and @OutputPK flags will trigger both of 
these results to be output to Query Results window. If these two flags are 
turned off (set to 'N'), the entire process will execute silently.  

One of the key features of this tool, which also illustrate the power of the 
MERGE statement, is the ability to specify a "where clause". This will allow 
you to effectively subset the scope of data upon which you will operating. In 
other words, if you only wish to impact a subset of the entire table, you can 
effectively do this by specifying a range of values. Leaving the "where clause" 
blank will result in the entire source table being synchronized to the target 
table. 

Procedure Call Syntax (Code Sample 1) 
Code Sample 2 is included to illustrate the second procedure call which 
utilizes a SQL Server Linked Server table source merging to a local database 
table destination. The additional parameter required is the Linked Servername 
(@SrcServer). I have modified this stored procedure to also synchronize 
heterogeneous data sources to target SQL Server tables via a Linked Server. 



The Best of SQLServerCentral.com – Vol.7 

304 
 

However, since there are many possibilities for source Linked Tables, I did not 
include sample code to do this. 

Finally, The Source Code 

Source Code 1 is a listing of the actual stored procedure code. There is quite a 
bit of code involved in this stored procedure and, since the intent of this article 
is not to illustrate every coding technique utilized but to instead provide you 
with a useful tool and provide a better understanding of the MERGE statement, 
I will not explain every detail. However, I would like to make several 
comments on its construction.  

A SQL buffer is built throughout the execution of the stored procedure and then 
executed. The optionally @ParseOnly flag can be utilized along with the 
@Debug flag to generate and display the MERGE SQL statement without 
actual execution. The DBA can then copy and paste the code and alter it prior 
to execution. 

The steps involved in creating the MERGE SQL are as follows: 

1. Determine the source columns. 

2. Determine the primary keys. If the primary keys can not be derived 
from the source table, they will be derived from the target table. If no 
primary keys can be identified, the matching will take place on every 
column of the source and target table (not recommended). 

3. Generate the SQL code for the MERGE statement. 

4. Execute the statement 

5. Clean up - remove temporary tables created during the above process. 

There are a few caveats regarding finer points in utilizing this stored procedure 
that I would like to mention: 

• The included code has been shortened for the purposes of this article 
and is not intended to be all-inclusive for every situation you may 
encounter. I would emphasize additional error-checking to improve 
robustness. 

• I have not had the opportunity to test this procedure with all known 
data types (eg, varbinary, text, etc.) 



The Best of SQLServerCentral.com – Vol.7 

305 
 

• The buffer for the generated SQL code is 8000 characters. A table with 
many columns may result in code which overflows this buffer. Proceed 
with caution. 

• Do not immediately use this stored procedure to merge the largest table 
in your data center. I generally advise exercising caution when using 
any new tool for the first time until you are comfortable with its 
behavior. I would not hesitate to use this on a small to medium size 
table but would question whether it is the appropriate tool for a 500 
million row table. 

• The source and target schemas must be identical. For heterogeneous 
linked tables, the source and target columns must have compatible data 
types. 

• Either the source or target tables must have a primary key defined. 
Otherwise, the tool will utilize a match involving all columns to 
determine uniqueness and merge data. 

• The source server may be a linked server but the target server must be a 
local SQL Server. This is a restriction of the MERGE statement. 

• Read and understand any constraints involved in utilizing the MERGE 
statement. For example, IDENTITY inserts may have to be turned on 
for the target table. Additionally, usage of the OUTPUT clause of the 
MERGE statement requires that triggers be disabled on the target table. 

The result of my effort is a very handy tool for synchronizing a target table 
with a source table. I have been pleased with the performance of SQL Server's 
MERGE statement. Synchronizing two SQL Server tables is an exceptionally 
quick operation. A SQL Server Linked Server connection synchronizing to a 
SQL Server table has also worked well. I have utilized this stored procedure 
extensively to merge heterogeneous tables via a linked server to SQL Server. 
As mentioned earlier in this article, additional code is required in the stored 
procedure to drive out column and primary key information and I have not 
included it in this example procedure. Performance when utilizing a 
heterogeneous linked server will probably not be on par with a SQL Server to 
SQL Server merge. However, the time saved over developing an alternative 
solution using SSIS may merit its usage in any event. 

The code presented in this article is free to use by this publication's readers. 
However, if you find that this handy tool has saved you time and stress, please 
make a contribution of $10 to your local food bank. 



The Best of SQLServerCentral.com – Vol.7 

306 
 

The author, Glen Schwickerath, is a database professional working in the 
Minnesota Twin Cities area and can be reached at gschwick@aol.com. 

Code Sample 1 

usp_merge @SrcServer=NULL, 
 @SrcDatabase='AdventureWorks', 
 @SrcSchema='Production', 
 @SrcTable='TransactionHistory', 
 @SrcType='SQL', 
 @TgtDatabase='AdventureWorksCopy', 
 @TgtSchema=Production, 
 @TgtTable=NULL, 
 @WhereClause='TransactionID between 100000 and 102000', 
 @Debug='Y', 
 @OutputPK='Y', 
 @ParseOnly='N'   

Execution Result 1 

Starting MERGE from AdventureWorks.Production.TransactionHistory to 
AdventureWorksCopy.Production.TransactionHistory. 

Where clause: TransactionID between 100000 and 102000 

Retrieving column information from SQL Server... 

Source table columns: 
TransactionID,ProductID,ReferenceOrderID,ReferenceOrderLineID,Transactio
nDate, 
TransactionType,Quantity,ActualCost,ModifiedDate 

Retrieving primary key information from SQL Server... 

Primary key(s) utilized: TransactionID 

Length of completed merge sql statement: 1463 

Text of completed merge sql statement 

------------------------------------- 
MERGE [AdventureWorksCopy].[Production].[TransactionHistory] T USING 



The Best of SQLServerCentral.com – Vol.7 

307 
 

( select 
TransactionID,ProductID,ReferenceOrderID,ReferenceOrderLineID,Transactio
nDate,TransactionType,Quantity,ActualCost,Modified 
Date from [AdventureWorks].[Production].[TransactionHistory] where 
TransactionID between 100000 and 102000) S on S.TransactionID = 
T.TransactionID WHEN MATCHED AND S.ProductID <> T.ProductID or 
S.Re 
ferenceOrderID <> T.ReferenceOrderID or S.ReferenceOrderLineID <> 
T.ReferenceOrderLineID or S.TransactionDate <> T.TransactionDate or 
S.TransactionType <> T.TransactionType or S.Quantity <> T.Quantity 
or S.ActualCost <> T.ActualCost or S.ModifiedDate <> T.ModifiedDate 
THEN UPDATE SET T.ProductID = S.ProductID,T.ReferenceOrderID = 
S.ReferenceOrderID,T.ReferenceOrderLineID = S.ReferenceOrderLineID,T 
.TransactionDate = S.TransactionDate,T.TransactionType = 
S.TransactionType,T.Quantity = S.Quantity,T.ActualCost = 
S.ActualCost,T.ModifiedDate = S.ModifiedDate WHEN NOT MATCHED BY 
TARGET THEN INSERT (T 
ransactionID,ProductID,ReferenceOrderID,ReferenceOrderLineID,Transaction
Date,TransactionType,Quantity,ActualCost,ModifiedDate) VALUES 
(TransactionID,ProductID,ReferenceOrderID,ReferenceOrderLineID,Tra 
nsactionDate,TransactionType,Quantity,ActualCost,ModifiedDate) WHEN 
NOT MATCHED BY SOURCE AND TransactionID between 100000 and 
102000 THEN DELETE OUTPUT $action,INSERTED.TransactionID AS 
[Transacti 
onID Ins Upd],DELETED.TransactionID AS [TransactionID Deleted]; 
 
$action TransactionID Ins Upd TransactionID Deleted 
---------- --------------------- --------------------- 
UPDATE 100006 100006 
INSERT 100007 NULL 
INSERT 100008 NULL 
INSERT 100009 NULL 
INSERT 100010 NULL 
INSERT 100011 NULL 
UPDATE 100016 100016 
UPDATE 100018 100018 
INSERT 100026 NULL 

9 
^Number of rows affected (insert/update/delete) 

  



The Best of SQLServerCentral.com – Vol.7 

308 
 

Code Sample 2 

usp_merge @SrcServer=MyServerLink, 
 @SrcDatabase='AdventureWorks', 
 @SrcSchema='Production', 
 @SrcTable='TransactionHistory', 
 @SrcType='SQL', 
 @TgtDatabase='AdventureWorksCopy', 
 @TgtSchema=Production, 
 @TgtTable=NULL, 
 @WhereClause='TransactionID between 100000 and 102000', 
 @Debug='Y', 
 @OutputPK='Y', 
 @ParseOnly='N'      

Note: The source code is available at www.sqlservercentral.com 

Test-Driven Development of T-SQL 
Code 
By Louis Roy 

The Agile software development methodology is ever increasing in popularity 
among software development teams. One of the key disciplines of Agile is 
Test-Driven Development (TDD). The basic premise of Test-Driven 
Development is to develop software in many small steps driven by the 
requirement to make tests pass. The sequence of events goes like this: write a 
simple test for how a bit of code should work. Because the code to make the 
test pass has not been written yet the test will fail. Then, write the simplest code 
necessary to make the test pass. Once the test passes, refactor the code if 
necessary to remove code duplication and improve the overall design of the 
code while preserving its functionality. Once refactoring is complete, move on 
to the next test and repeat. If done correctly and within the guidelines of 
properly structured unit tests, the production code will be driven by passing 
tests. If done well, the resulting code is not only covered by unit tests that can 
be executed automatically, but is simple in design and contains only those 
features that are required for the application. 

There are many tools available to help with the process of TDD. For the .NET 
developer, NUnit is a popular choice: (http://nunit.sourceforge.net). For the 
SQL Server developer, TSQLUnit is available: (http://tsqlunit.sourceforge.net). 

http://nunit.sourceforge.net/�
http://tsqlunit.sourceforge.net/�


The Best of SQLServerCentral.com – Vol.7 

309 
 

In this article I discuss what TSQLUnit is and how it can be used for TDD of 
database code. 

What is TSQLUnit? 

TSQLUnit is a SQL Server database testing framework based on the xUnit 
(http://xunitpatterns.com) unit testing framework. It is a free, open-source 
framework that is installed by simply executing a T-SQL script against a SQL 
Server database. The script creates a handful of tables and stored procedures 
that are used to enable test-driven development of database code. 

Getting Started 

Let's assume we are developing an application that will be used to analyze 
stock price trending patterns. One requirement of the application is to calculate 
the average price of a stock. A stored procedure will be created that takes in a 
stock symbol as an argument and returns the average price of the stock. In the 
future we may add additional arguments to account for moving averages (200 
day, 40 day, etc) but because this is not currently a requirement only the most 
basic functionality will be implemented. For simplicity, let's assume our stock 
price data is stored in a table with the following table definition: 

CREATE TABLE dbo.StockPrice  
( 
 StockId INT IDENTITY(1,1) PRIMARY KEY,  
 Symbol VARCHAR(10) NOT NULL,  
 ClosePrice MONEY NOT NULL,  
 CloseDate DATETIME NOT NULL 
)   

Step 1: Create a test 
In order for TSQLUnit to identify a stored procedure as a test the name must be 
prefixed with 'ut_'. For those familiar with NUnit, this is similar to decorating a 
method with the [Test] attribute. In TDD, there are essentially 4 parts to a unit 
test: Setup, Exercise, Assert, and Teardown (SEAT). 

1. Setup - prepare the test conditions by manipulating the objects, tables, 
and/or data 

2. Exercise - invoke the production code 

3. Assert - check that the actual result equals the expected result 

http://xunitpatterns.com/�


The Best of SQLServerCentral.com – Vol.7 

310 
 

4. Teardown - return everything back to the way it was before the test 
started 

In the following TSQLUnit test, test data is staged (Setup), the production code 
is invoked (Exercise), the actual result is validated against the expected result 
(Assert), and everything is returned to its previous state (Teardown), albeit 
implicitly via TSQLUnit's automatic invocation of ROLLBACK TRAN at the 
end of each unit test. 

By default, TSQLUnit tests will pass unless the tsu_Failure stored procedure is 
invoked. Therefore, all TSQLUnit tests must explicitly call tsu_Failure when 
the actual result does not equal the expected result. 

CREATE PROC dbo.ut_TestGetAveragePriceBySymbol 
AS 
 SET NOCOUNT ON 

 -- Setup the test conditions by inserting test data 
 INSERT INTO dbo.StockPrice VALUES ('XYZ', 10, GETDATE() - 2)  INSERT INTO dbo.StockPrice VALUES ('XYZ', 15, GETDATE() - 1) 
 INSERT INTO dbo.StockPrice VALUES ('XYZ', 5, GETDATE()) 
 INSERT INTO dbo.StockPrice VALUES ('PDQ', 100.00, GETDATE()) 

-- Exercise the test 
 DECLARE @ActualAvgClosePrice MONEY 
 EXEC dbo.GetAveragePriceBySymbol 'XYZ', @ActualAvgClosePrice 
OUT 

 -- Assert expectations 
 DECLARE @ExpectedAvgClosePrice MONEY 
 SET @ExpectedAvgClosePrice = 10 --(10 + 15 + 5) / 3 = 10 
 IF (@ExpectedAvgClosePrice != @ActualAvgClosePrice) 
    EXEC dbo.tsu_Failure 'GetAveragePriceBySymbol failed.' 

-- Teardown 
 -- Implicitly done via ROLLBACK TRAN 
GO   

Step 2: Run the test 

Executing tsu_runTests will run all unit tests. Running the stored procedure 
above would result in a failed test because the GetAveragePriceBySymbol 
stored procedure does not exist. This is good since no production code should 
be written until you have a failing test. Therefore, the next step is to create the 
GetAveragePriceBySymbol stored procedure. 



The Best of SQLServerCentral.com – Vol.7 

311 
 

Step 3: Create the GetAveragePriceBySymbol stored 
procedure 

TDD encourages us to implement our solutions by doing the simplest thing 
possible in order to make the test pass. After the test passes, the code can be 
refactored to make it better by removing duplicate code, extracting code into 
smaller units, etc. In my opinion, it is much more difficult to refactor SQL code 
than it is to refactor .NET or Java code because of the lack of tooling (i.e. 
ReSharper for Visual Studio, etc) and the lack of object-oriented design of code 
modules within T-SQL code. 

CREATE PROCEDURE dbo.GetAveragePriceBySymbol 
 @Symbol VARCHAR(10), 
 @AvgClosePrice MONEY OUT 
AS 

 SET NOCOUNT ON 

 SELECT @AvgClosePrice = AVG(ClosePrice) 
 FROM dbo.StockPrice 
 WHERE Symbol = @Symbol 

 
GO   

Step 4: Run the test and watch it pass. 

 

  



The Best of SQLServerCentral.com – Vol.7 

312 
 

Step 5: Refactor 

Now that the test passes the code can be refactored. The production code 
appears fine so no changes are necessary. And that's it. You now have a test 
that can be automatically called by invoking the tsu_RunTestsstored procedure 
from a Nant (http://nant.sourceforge.net/) task or other task as part of your 
automated build /continuous integration (CI) process 
(http://confluence.public.thoughtworks.org/display/CCNET/Welcome+to+ 
CruiseControl.NET). 

 Now, if you want to see the unit tests that you've created so far simply execute 
the tsu_Describe stored procedure: 

 

The above screen shot shows every unit test created within the current 
database. The SUITE, HASSETUP, and HASTEARDOWN columns are 
meaningful when working with test suites. 

Test Suites 

A test suite is similar to a TestFixture in NUnit. Individual unit tests can be 
grouped into test suites. Some of the advantages of using test suites are: 

• Tests that exercise similar code can be grouped together.  

• Individual test suites can be run independent of all other tests.  

• Tests within a suite can share Setup and Teardown procedures.  

Only test suites can have a Setup (a procedure that is run before each test 
within the suite) and a Teardown (a procedure that is run after each test within 
the suite) stored procedure. Setup stored procedures are commonly used to 
insert or update test data that the tests can use to exercise the expected 
behavior. 

http://confluence.public.thoughtworks.org/display/CCNET/Welcome+to+CruiseControl.NET�
http://confluence.public.thoughtworks.org/display/CCNET/Welcome+to+CruiseControl.NET�


The Best of SQLServerCentral.com – Vol.7 

313 
 

Stored procedures must adhere to the following naming convention to be 
included in a suite: 

ut_%SUITENAME%_%TESTNAME%. 

For example, if a suite called 'StockPrice' is created to group all stored 
procedures related to stock price then the stored procedure that was created 
above should be renamed to:  

ut_StockPrice_TestGetAveragePriceBySymbol. 

SP_RENAME 'dbo.ut_TestGetAveragePriceBySymbol', 
'ut_StockPrice_TestGetAveragePriceBySymbol' 

Run tsu_Describe and notice how the unit test is now part of a suite: 

 

The test can now be refactored (both production code and test code should be 
refactored) by creating a Setup stored procedure that creates common test data 
rather than duplicating insert statements across multiple tests. A Setup stored 
procedure must adhere to the following naming convention:  

ut_%SUITENAME%_Setup 

Create the Setup stored procedure and move the insert statements from 
ut_StockPrice_TestGetAveragePriceBy 
Symbol to ut_StockPrice_Setup as follows: 

CREATE PROCEDURE dbo.ut_StockPrice_Setup 
AS 
 SET NOCOUNT ON         

 
   -- Setup the test conditions by inserting test data 

INSERT INTO dbo.StockPrice VALUES ('XYZ', 10, GETDATE() - 2) 



The Best of SQLServerCentral.com – Vol.7 

314 
 

INSERT INTO dbo.StockPrice VALUES ('XYZ', 15, GETDATE() - 1) 

INSERT INTO dbo.StockPrice VALUES ('XYZ', 5, GETDATE()) 

INSERT INTO dbo.StockPrice VALUES ('PDQ', 100.00, GETDATE()) 

GO 

 

Run tsu_Describe and verify our unit test has a Setup routine: 

 

Because we've refactored our test code, the test(s) should be run again to ensure 
they still pass. Specific test suites can be executed by passing the suite name as 
an input parameter (@Suite) to tsu_RunTests: 

EXEC tsu_RunTests 'StockPrice' 

Any additional unit tests created within the StockPrice suite will have the same 
test data available since the Setup procedure is run before every unit test within 
the suite. 

Although each unit test is run within a transaction that is rolled back, a 
teardown procedure can be created to clean up after each test is run. Similar to 
the setup procedure, a teardown procedure must adhere to the following naming 
convention: 

ut_%SUITENAME%_Teardown 

Teardown procedures can be used to clean up resources outside the scope of a 
database transaction such as files that were created on the filesystem to support 
the test suite, etc. 

  



The Best of SQLServerCentral.com – Vol.7 

315 
 

Testing Recordsets 

The example above illustrates the process for testing a stored procedure that 
returns data via an output parameter. Stored procedures that return recordsets 
are also testable by using an INSERT EXEC command. In SQL Server 2000 
and above a stored procedure can insert records directly into a physical table or 
temp table. SQL Server 2005 and 2008 allow inserting of records directly into 
table variables. 

For example, if the GetAveragePriceBySymbol stored procedure returns a 
recordset, the test can be written to insert the resulting recordset into a temp 
table or table variable that can be queried during the assertion step of the test. 

DECLARE @Temp TABLE (AvgClosePrice MONEY)         

 
-- Exercise the test 
DECLARE @ActualAvgClosePrice MONEY 
INSERT INTO @Temp 
EXEC dbo.GetAveragePriceBySymbol 'XYZ' --changed to return 
recordset         

 
SET @ActualAvgClosePrice = (SELECT TOP 1 AvgClosePrice FROM 
@Temp)         

 
-- Assert expectations 
DECLARE @ExpectedAvgClosePrice MONEY 
SET @ExpectedAvgClosePrice = 10 
IF (@ExpectedAvgClosePrice != @ActualAvgClosePrice) 

   EXEC dbo.tsu_Failure 'GetAveragePriceBySymbol failed.'   

 

In addition to testing stored procedures, unit tests can be written to test the 
existence of constraints, indexes, keys, and other table attributes to ensure 
database objects are scripted correctly and applied as expected. It does not 
make sense to test the enforcement of such constraints as this would be testing 
the functionality of SQL Server itself. However, on multiple occasions I have 
witnessed painfully slow-running queries in a production environment as a 
result of a missing index that was incorrectly scripted or simply never applied. 

  



The Best of SQLServerCentral.com – Vol.7 

316 
 

Summary 

It should be evident that tools like TSQLUnit can be extremely valuable to 
database development. Test-Driven Development has proven to be an effective 
discipline for software developers across many different languages and 
platforms. Tools like NUnit, JUnit, Resharper, TestDriven.NET, Ant, NAnt, 
and CruiseControl have brought and will continue to bring tremendous benefit 
to development teams. TSQLUnit is a simple, yet powerful and effective tool 
designed to provide the same benefits as non-database TDD tools. 

Resources 

TSQLUnit - 

Introduction to Test Driven Design (TDD) - 

http://tsqlunit.sourceforge.net 

NUnit - 

http://www.agiledata.org/essays/tdd.html 

http://nunit.sourceforge.net 

CruiseControl.NET - 

Nant - 

http://cruisecontrol.sourceforge.net/ 

Automating tests for T-SQL code 

http://nant.sourceforge.net/ 

By Ladislau Molnar 

Introduction 

Recently I had to write a lot of T-SQL code and I decided to approach the task 
of unit testing it as rigorously as possible. There are several T-SQL test tools 
available that seem to follow the model established by unit test tools from 
languages like Java and C#. Some of these are: spunit, Sqltdd, utTSQL, 
TSQLUnit, etc. I soon realized that in a real life environment there was a need 
for features that the existing tools were either missing or did not implement in a 
reliable way. Hence, yet another tool was born: T.S.T. (T-SQL Test Tool). 

Eventually I released it as an open source project hosted at 
http://tst.codeplex.com. At the same place you can find complete 

http://tsqlunit.sourceforge.net/�
http://www.agiledata.org/essays/tdd.html�
http://nunit.sourceforge.net/�
http://cruisecontrol.sourceforge.net/�
http://nant.sourceforge.net/�
http://tst.codeplex.com/�


The Best of SQLServerCentral.com – Vol.7 

317 
 

documentation and samples. A 5 minutes video demo is also available at 

Here are some of the areas where T.S.T. improves upon: 

http://www.youtube.com/watch?v=uGkGSkoh-CE. 

Reliable comparison of values of different SQL types 

Since T-SQL does not have method overloading, most of the existing tools use 
the sql_variant data type for the parameters used in the comparison procedures 
(think AssertEquals). Comparing two sql values of different types that were 
converted to sql_variant can yield outcomes that can be surprising to many 
people. Some of the T-SQL test tools are not prepared to handle all the possible 
scenarios and perform an unreliable comparison. 

T.S.T. has a reliable implementation of Assert.Equals / Assert.NotEquals 
procedures. They automatically detect when they are used incorrectly due to 
incompatibility of the data types. Additional procedures like 
Assert.NumericEquals, Assert.NumericNotEquals, Assert.FloatEquals, 
Assert.FloatNotEquals are provided. 

Details:To illustrate this problem consider the following procedure that tests the 
equality of two values: 

  CREATE PROCEDURE TestEquals         
    @Expected sql_variant,        
    @Actual sql_variant      
  AS      
  BEGIN        
    -- We'll ignore the NULL case for this simple example        
    IF @Expected = @Actual          
       PRINT 'OK'        
    ELSE          
      PRINT 'Error'        
    END      
  GO      

And now invoke this validation in a code like: 

  DECLARE @MyVar float 
  SET @MyVar = 1.5      
  EXEC dbo.TestEquals 1.5, @MyVar      

http://www.youtube.com/watch?v=uGkGSkoh-CE�


The Best of SQLServerCentral.com – Vol.7 

318 
 

The output will show 'Error' even though you may be tempted to expect 'OK'. 
This is because when TestEquals is executed @Expected and @Actual will 
contain values not only of different data types (that in itself is not enough to fail 
the comparison) but values of different data type families. In this case 
@Expected contains a value of type numeric which belongs to the 'exact 
numeric' data type family. @Actual contains a value of type float which 
belongs to the 'approximate numeric' data type family. 

Table comparison 

When it comes to validating tables returned by stored procedures, functions or 
views many existing test tools don't provide a lot of help. T.S.T. has a 
convenient support for comparing results in table form by providing an API: 
Assert.TableEquals. 

Other features needed to facilitate integration with build 
processes and more advanced uses  

Some of the features that T.S.T. provides that are useful in this context: 

• Can produce results in an XML format. 

• Can run concurrent test sessions against the same or multiple 
databases. This is useful for cases where one or more build systems 
installed on the same server run concurrent build processes. 

• Can be triggered from the command prompt, from SQL Management 
Console or programmatically.  

• Test stored procedures don't have to be registered; they are picked-up 
automatically by the tool. 

• Has a reliable automatic rollback mechanism. 

Using the T.S.T. T-SQL test tool 

Installing the tool 

You can download the tool from http://tst.codeplex.com. There go to the 
"Downloads" tab, and click on the link under "Downloads & files". Extract the 
content of the ZIP file on a local folder. The content contains no binaries - only 
scripts and documentation. Open a command prompt, go to that location and 

http://tst.codeplex.com/�


The Best of SQLServerCentral.com – Vol.7 

319 
 

run "TST.BAT" This will install a SQL database called TST which is all you 
need to start testing your code. 

Playing with the quick start sample 

The tool comes with a quick start sample code. This was written to illustrate 
most of the features that T.S.T. offers. To install the quick start sample 
database open a command prompt, go to the location where you have TST.BAT 
and run: 

TST.BAT /QuickStart 

This will install a SQL database called TSTQuickStart that contains sample 
code and tests. Once this is done, you can treat TSTQuickStart as any regular 
database that contains T.S.T. test procedures. For example, to execute all the 
tests contained there, go in the command prompt and run: 

TST.BAT /RunAll /TSTQuickStart



The Best of SQLServerCentral.com – Vol.7 

320 
 

The output that results is shown below: 

 

Writing test procedures 

Let's say we have a function called QFn_AddTwoIntegers. As its name 
suggests it adds two integers. Here is an example of a test for this function: 

  CREATE PROCEDURE dbo.SQLTest_AddTwoIntegers 
  AS 
  BEGIN 

     DECLARE @Sum int       SELECT @Sum = 
dbo.QFn_AddTwoIntegers(1,1) 
     EXEC TST.Assert.Equals '1 + 1 = 2', 2, @Sum 

  END 
  GO   

In the next sections we'll go in more detail about what we may have inside a 
test procedure. For now it is enough to point out that writing a test is as simple 
as creating a stored procedure with no parameters and a name prefixed with 
'SQLTest_'. The test runners provided by T.S.T. will recognize that stored 
procedure as a test based on this prefix.  

There are similar naming conventions to group tests into suites and to provide 
set-up and teardown procedures. Let's say that we want to group all the tests 



The Best of SQLServerCentral.com – Vol.7 

321 
 

regarding the authentication procedures in a test suite called 'Authentication'. 
The test procedures will be declared as follows: 

CREATE PROCEDURE dbo.SQLTest_SETUP_Authentication ... 
CREATE PROCEDURE dbo.SQLTest_TEARDOWN_Authentication ... 
CREATE PROCEDURE 
dbo.SQLTest_Authentication#LoginInvalidPassword ... 
CREATE PROCEDURE 
dbo.SQLTest_Authentication#LoginInvalidUserName ... 
CREATE PROCEDURE dbo.SQLTest_Authentication#LoginValidUser ...   

When T.S.T. is directed to run the suite 'Authentication', it will isolate the 
procedures above based on their names and will run them in the following 
order: 

• SQLTest_SETUP_ Authentication  

• SQLTest_ Authentication#LoginInvalidPassword  

• SQLTest_TEARDOWN_Authentication 

 

• SQLTest_SETUP_ Authentication  

• SQLTest_ Authentication#LoginInvalidUserName  

• SQLTest_TEARDOWN_Authentication 

 

• SQLTest_SETUP_ Authentication  

• SQLTest_Authentication#LoginValidUser  

• SQLTest_TEARDOWN_Authentication  

Important: Teardowns should be avoided unless there is a need to do more than 
simply rolling back changes. By default the TST framework automatically rolls 
back all the changes made in the Setup/Test/Teardown at the end of each test. 
This makes the teardown unnecessary in most scenarios. The rollback 
mechanism is described later in this article. 

  



The Best of SQLServerCentral.com – Vol.7 

322 
 

How to run the tests 

You can run all the tests in a database in the command prompt by running the 
command: 

TST.BAT /RunAll DatabaseName 

You can also trigger one specific suite by running: 

TST.BAT /RunSuite DatabaseName SuiteName 

To use as an example the names from the previous section: 

TST.BAT /RunSuite DatabaseName Authentication 

Or you can trigger one specific test by running: 

TST.BAT /RunTest DatabaseName TestName 

An example of this would be: 

TST.BAT /RunTest DatabaseName 
SQLTest_Authentication#LoginValidUser 

You can also run all the tests in the SQL Management Console by executing a 
runner stored procedure: 

EXEC TST.Runner.RunAll 'DatabaseName' 

Or you can run one suite by executing: 

EXEC TST.Runner.RunSuite 'DatabaseName', 'SuiteName' 

Or you can run one test by executing: 

EXEC TST.Runner.RunTest 'DatabaseName', 'TestName' 

  



The Best of SQLServerCentral.com – Vol.7 

323 
 

Using the tool to validate values 

Let's take a very simple case where we are going to test a function called 
dbo.QFn_TinyintToBinary. This function converts an integer to a string 
containing its binary representation. For example it converts 10 into '1010'. 
We'll pass in a value, obtain a result and then validate it against its expected 
result. We will repeat this with several values. To implement this, we create the 
following test stored procedure: 

  CREATE PROCEDURE SQLTest_QFn_TinyintToBinary 
  AS 
  BEGIN        

     DECLARE @BinaryString varchar(8)        

     SET @BinaryString = dbo.QFn_TinyintToBinary(NULL) 
     EXEC TST.Assert.IsNull 'Case: NULL', @BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(0) 
     EXEC TST.Assert.Equals 'Case: 0', '0', @BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(1) 
     EXEC TST.Assert.Equals 'Case: 1', '1', @BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(2) 
     EXEC TST.Assert.Equals 'Case: 2', '10', @BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(129) 
     EXEC TST.Assert.Equals 'Case: 129', '10000001', 
@BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(254) 
     EXEC TST.Assert.Equals 'Case: 254', '11111110', 
@BinaryString        

     SET @BinaryString = dbo.QFn_TinyintToBinary(255) 
     EXEC TST.Assert.Equals 'Case: 255', '11111111', 
@BinaryString     

  END 
  GO   

Using the tool to validate views, stored procedures or 
functions that return a table 

A more interesting case is when we have to validate a table that is returned by a 
stored procedure or maybe a function or a view. T.S.T. offers a specialized API 
for this task: Assert.TableEquals. Let's say that we have a stored procedure 
called GetDirectReports that returns some data about all the direct reports of a 
manager. Our test procedure may look something like this: 



The Best of SQLServerCentral.com – Vol.7 

324 
 

  CREATE PROCEDURE SQLTest_GetDirectReports 
  AS 
  BEGIN 

     -- Create the test tables #ActualResult and 
#ExpectedResult.  
     -- They must have the same schema as the table returned  
     -- by the procedure GetDirectReports 
     CREATE TABLE #ExpectedResult ( 
        EmployeeId int PRIMARY KEY NOT NULL, 
        EmployeeFirstName varchar(256), 
        EmployeeLastName varchar(256) 
     ) 
     CREATE TABLE #ActualResult ( 
        EmployeeId int PRIMARY KEY NOT NULL, 
        EmployeeFirstName varchar(256), 
        EmployeeLastName varchar(256) 
     )        

     -- This is where we set-up our scenario. For example we  
     -- could insert records in a employee table that will  
     -- generate a relevant scenario for calling 
GetDirectReports. 
     -- ... ... ... 
     -- ... ... ... 

     -- Store the expected result in #ExpectedResult 
     INSERT INTO #ExpectedResult VALUES(10, 'Mary' , 'Jones' ) 
     INSERT INTO #ExpectedResult VALUES(11, 'Michael', 'Garcia' 
) 
     INSERT INTO #ExpectedResult VALUES(12, 'Linda' , 'Moore' ) 

     -- Call GetDirectReports and store the result in 
#ActualResult 
     INSERT INTO #ActualResult EXEC GetDirectReports 

     -- Now compare the actual vs. expected data. 
     -- Assert.TableEquals compares the schema and content 
     -- of tables #ExpectedResult and #ActualResult. 
     EXEC TST.Assert.TableEquals 'Some contextual message here' 

  END 
  GO   

When the table that we validate contains columns that are nondeterministic 
(like timestamps) we won't be able to predict their 'correct values'. We can 
exclude those columns from the validation by using an optional parameter of 
Assert.TableEquals. For example if our table contains two columns called 
[Create Date] and [Modified Date] we can skip them from the validation by 
calling: 



The Best of SQLServerCentral.com – Vol.7 

325 
 

  EXEC TST.Assert.TableEquals  
     @ContextMessage = '...',  
     @IgnoredColumns = 'Create Date;Modified Date'   

If we have to validate a table returned by a function instead of a stored 
procedure then the line: 

  INSERT INTO #ActualResult EXEC GetDirectReports 

will have to be changed to something like: 

  INSERT INTO #ActualResult SELECT * FROM 
dbo.QFn_GetDirectReports() 

And if this is a test that validates a view then we will write something like: 

  INSERT INTO #ActualResult SELECT * FROM dbo.VW_DirectReports 

Of course, in these two last cases we can explicitly specify the columns that we 
want to transfer in the table #ActualResult. 

Using the tool to validate errors 

T.S.T. can be used to validate the scenarios where we expect certain errors to 
occur: 

  CREATE PROCEDURE SQLTest_ExpectedError 
  AS 
  BEGIN 

     EXEC TST.Assert.RegisterExpectedError  
        @ContextMessage = 'Some contextual message here', 
        @ExpectedErrorMessage = 'Test error' 

     -- SomeSprocThatRaisesAnError is the unit under test  
     -- and we expect that it will raise an error by executing:  
     -- RAISERROR('Test error', 16, 1) 
     EXEC dbo.SomeSprocThatRaisesAnError 

  END 
  GO  

Note: The API RegisterExpectedError has a few more parameters 
that allow for a more complex usage. 



The Best of SQLServerCentral.com – Vol.7 

326 
 

Automatic Rollback 

One of the important issues you will have to deal with when testing T-SQL 
code is how to clean-up after one test so that the changes it made won't 
interfere with subsequent tests. The default behavior of T.S.T is to wrap a test 
in a transaction and rollback all the changes at the end. That includes changes 
done during the set-up, the test itself and the teardown procedure. And since the 
roll back is automatic most of the time you should not have to write a teardown 
procedure at all. 

If the code that you are testing does not use transactions or if it does a BEGIN 
TRANSACTION / COMMIT TRANSACTION, then you are fine and the 
automatic rollback will work as expected. 

However, if the code you are testing does a BEGIN TRANSACTION / 
ROLLBACK TRANSACTION, that rollback will interfere with the transaction 
opened by the T.S.T. framework. In SQL Server, a ROLLBACK 
TRANSACTION executed in a nested transaction causes the rollback to 
propagate to the outermost level. This will in effect terminate the transaction 
opened by T.S.T. and have all the subsequent changes executed outside of a 
transaction. That will render the TST Rollback useless. 

T.S.T. will detect the cases where the automatic rollback cannot function as 
expected. In those cases it will fail the corresponding test with an error 
indicating what happened. If that is the result of a bug in your test or in your 
unit under test then you should be able to fix it. If that is the result of a 
legitimate scenario you have the option of disabling the automatic rollback and 
do the clean-up on your own in a teardown procedure. 

The T.S.T. API 

Just to get another idea about the scope of the tool, here is the list of procedures 
that form the T.S.T. API: 

• Assert.LogInfo  

• Assert.Pass  

• Assert.Fail  

• Assert.Equals  

• Assert.NotEquals  



The Best of SQLServerCentral.com – Vol.7 

327 
 

• Assert.NumericEquals  

• Assert.NumericNotEquals  

• Assert.FloatEquals  

• Assert.FloatNotEquals  

• Assert.IsLike  

• Assert.IsNotLike  

• Assert.IsNull  

• Assert.IsNotNull  

• Assert.TableEquals  

• Assert.IsTableEmpty  

• Assert.RegisterExpectedError 

 

• Runner.RunAll  

• Runner.RunSuite  

• Runner.RunTest 

 

• Utils.SetConfiguration  

Conclusion 

This tool was designed with the idea of making its adoption as inexpensive as 
possible. It can be triggered from the command prompt, from SQL 
Management Console or programmatically. It can produce XML results and it 
is able to run concurrent test session. All these should make the integration with 
existing build processes simple even for large scale projects. If you have a 
project that does not have an automated build process you can still run all your 
tests with only one command. The test runners will detect the test procedures 
based on naming conventions. This means there is no registration process of the 
tests so you don't have to incur additional costs maintaining that. Hopefully all 
these things will make it an attractive tool to use for anyone who wants to 
automate its T-SQL tests. 



The Best of SQLServerCentral.com – Vol.7 

328 
 

Database Server Upgrades the Plan, the 
Template, and the Task List 
By Bill Richards 

A wise person once said, "To fail to plan is a plan to fail". This holds true in 
most areas of life and is no exception when it comes to upgrading servers. The 
key to a successful upgrade is planning. In this article, I present practical steps 
to help ensure your upgrade is successful by assembling an upgrade team, 
making sure you have the right plan, and having a good working database 
server upgrade template.  

Inventory your server: 

The first thing you should do before upgrading your server is inventory it. 
Make a list of all the applications installed on your database server and make a 
list of all ODBC connections on your server. Note the drive letters and note 
what databases or files are on each drive. Note the operating system and service 
packs installed. After making a list of all these items, get the install 
documentation for each application. Print screen the ODBC connections. List 
the drive letters and what is on each drive. The idea is to know everything 
about your server. In my experience, there are often times supporting 
applications on database servers and sometimes a database server is not always 
a dedicated server. Make sure you have a completed list, install instructions, 
print screens, and any other necessary supporting documentation.  

Map Applications To database: 

Make sure you have a complete list of applications and their supporting 
databases. Often times, a database supports several applications. This list is 
important because it will help you identify application owners and application 
testers. After you believe you have a complete list, send out a communication 
to the developers, application owners, business units, and possibly other 
groups. The purpose of sending out a communication is to see if they have 
added applications that you were not aware of or if application owners may 
have changed since you created your initial list. They should send any 
corrections to the list back to you. Be sure to update your spreadsheet and send 
it out again to all appropriate groups, so they have a final version of the 
application to database list. 



The Best of SQLServerCentral.com – Vol.7 

329 
 

Identify the upgrade team: 

Upgrading a database server is a team effort. Meet with each department and 
identify the team members who are helping you on the upgrade. As a database 
administrator, often times your role is to both perform the database work, and 
also to coordinate the effort of all the groups and individuals involved. The list 
below outlines the teams and individuals involved, as well as, their 
responsibilities. 

• DBA Role- A DBA installs and configures SQL Server, SQL Server's 
service packs and feature packs. Also, a DBA is responsible for 
backups and restoration of databases, moving logins, setting up linked 
servers, moving DTS and SSIS packages, and moving jobs. In addition, 
a DBA is responsible for checking the integrity of each database, 
updating statistics and usage, and setting up any specialized sql 
procedures such as mirroring, replication, log reading, etc.  

• Networking Role- You will need an individual to install the operating 
system, install network patches, set up drives, and set up any other 
operating or networking configuration.  

• Developers Role- You will need developers who are familiar with the 
applications the database supports. Sometimes, developers have special 
setups in configuration files that need to be changed when moving to a 
new server. Developers can also be helpful in troubleshooting 
connectivity problems that arise. The developer is also utilized as the 
first initial tester of the application.  

• Application Testers Role - This is a business person who uses the 
applications every day. Some companies have a QA department to fill 
this role. It is the application tester's job to use the application and 
collect test samples of the data before the upgrade. Test samples can be 
obtained through print screens or other methods. After the upgrade, the 
application tester once again use the application and verifies that it 
brings up the same information and functions comparable to the way it 
did before the upgrade. It is more beneficial to have a business user test 
the application rather than a developer. In my experience, an individual 
who uses the application every day uses the application differently than 
a developer and can catch more inconsistencies. Additionally, an 
application tester has a vested interest in making sure the application 
works correctly. Often times, it is beneficial for each application tester 
to create test scripts in advance, so that each part of the application is 
tested thoroughly. After testing, signed test scripts should be submitted 



The Best of SQLServerCentral.com – Vol.7 

330 
 

to the DBA, so that the DBA has verification that the application was 
fully tested.  

Planning and Communication: 

Two of the reasons projects fail are improper planning and ineffective 
communication. Communication is one of the most essential components 
during the upgrade. People prefer to be informed about how the upgrade is 
progressing. Proper communication helps solve any unexpected issues that 
arise and allows them to be handled by team consensus rather than one 
individual. 

Before the upgrade a number of meetings should take place. After each 
meeting, a summation email should be sent to all participants. The email should 
communicate any decisions that were made, any assumptions that were 
discussed, and the completion date of tasks that were assigned to individuals. 
At the conclusion of the email, invite feedback from the participants. Feedback 
ensures that what has been written is accurate and gives participants an 
opportunity to add any missed items, ask for clarification, or change an item 
that was inaccurate. Send out a final email when all the changes have been 
made. Below is a list of items that need to be discussed and agreed upon during 
the meetings. 

1. Agree on when server preparation work needs to be completed. If you 
are moving to a new server, preparation work can be completed ahead 
of time. Often times, this is a coordination effort between more than 
one group. For instance, the networking group will install the operating 
system and other configurations and then give it to the DBA group to 
install SQL Server. The network group needs to agree upon the date by 
which they will have their work completed, so the next group can 
perform their configurations. 

2. Communicate the full range of applications that are affected. End users 
understand application availability, whereas IT staff thinks in terms of 
server availability. Communicate which applications will be affected 
during the upgrade. If you state that a particular server will not be 
available, an end user may not realize that this means their application 
will not be available during the upgrade.  



The Best of SQLServerCentral.com – Vol.7 

331 
 

3. Agree on when a development environment can be set up that is as 
close as possible to mirroring the production environment, so that a 
practice upgrade can take place. By upgrading a development 
environment, you will identify steps that need to be accomplished in 
order to have a successful upgrade. All groups will need to be involved 
when upgrading a development environment. You will need to make 
sure applications are working and processes are running as they do in 
production. If you do not have the hardware to create a complete 
development environment, consider creating a virtual machine 
environment to practice the upgrade. 

4. Agree on the server upgrade time and date - The DBA should propose 
a date and time to do the upgrade. Each stake holder will then have the 
opportunity to suggest alternate dates or arrange their schedule, so that 
the upgrade can be performed on that day. 

5. Create a list of contacts - A phone list of business and cell phones 
should be constructed ahead of time in the event that an issue comes up 
which requires the input of others. It is better to get a group consensus 
when an issue arises than to assume you are choosing the best course of 
action. This ensures that the right decision was made and that it was a 
group that made the decision. 

6. Communicate the time when each group is needed during the upgrade - 
Since the DBA will be performing most of the work during the 
upgrade, it is not necessary to have other groups involved until they are 
needed. Developers are not needed until the upgrade has been 
completed, so that they can do the initial testing. Business testers are 
needed to get samples ahead of time and after the upgrade has been 
completed. Communicate a projected time when each group is needed. 

7. Upgrade Status Communication - During the upgrade, it is helpful to 
let team members know the status of the upgrade. It could be that the 
upgrade is running ahead of schedule, behind schedule, or that you 
have run into unexpected issues and need to alter the time for 
developers and testers to arrive. Also, it is good to let everyone know 
that the upgrade is complete and they can log onto their system. One 
effective way to communicate the status is to set up a voice message on 
a phone number. Communicate to everyone that they need to call the 



The Best of SQLServerCentral.com – Vol.7 

332 
 

phone number and listen to the message before they come to the office. 
The following are some examples of some helpful upgrade status voice 
messages. 

"The upgrade is going as planned, we should be done by 8:00 pm. Please 
check the notification before you come in to make sure the status has not 
changed".  

"The upgrade is running behind schedule, the new time is 10:00 pm. Please 
check the notification before you come in to make sure the status has not 
changed".  

"We have run into XX issue. We need to meet and discuss what course of 
action to take".  

8. 8. When the upgrade is complete, communicate by email to the 
affected groups that the upgrade was successful and that their 
applications are now on-line and available for use. Communicate who 
should be notified in the event of unexpected errors that may be related 
to the upgrade.  

9. 9. Develop a rollback plan - Sometimes, things do not go as planned, so 
a rollback plan should be developed. This rollback process will need to 
be started if the server is not upgraded by an agreed upon deadline. 

The Process of upgrading the server: 

You can find an upgrade plan template of detailed steps that are used in most 
upgrades.on SQLServerCentral.com. When you upgrade your development 
environment, you will be able to customize a task list for your environment. 
Each task should have a projected start date and time, the task description, the 
person who is responsible for the task, the completion date, and comments. The 
upgrade plan should have three sections:  

1.  Pre-Upgrade preparation - This section should contain anything that 
can be done ahead of time. If you are moving to a new server, many 
things can be done. Networking can install the operating system and 
patches, configure drives, and do any other configurations to get the 
server ready. SQL Server, supporting service packs, and feature packs 



The Best of SQLServerCentral.com – Vol.7 

333 
 

can be installed. Supporting applications can be installed. If you are 
upgrading your current server, there will only be a limited number of 
things you can do ahead of time. You will still be able, however, to 
inventory the server, generate scripts, and document any configuration 
options. The key to this section is to minimize the work that needs to 
be accomplished on the upgrade day. 

2. Upgrade Day - This section should contain any task you need to 
perform on the day of the upgrade. In the time column, you should 
enter an estimated time to ensure that you are on schedule. Also, after 
the upgrade is completed, developers need to come in to the office to 
test the applications they support. They should help troubleshoot 
connectivity problems and application issues as they arise. After 
developers test their applications, business application testers arrive 
and test the application. Application testers should be in constant 
communication with the developers and DBAs to troubleshoot any 
issues that arise. During testing, the application tester documents each 
successful test by print screens or other methods. At the end of testing, 
the application tester sends the DBA a signed copy of the test results. 

3. Rollback Plan - In the event the upgrade does not go as planned, it is 
important that you spend time on a rollback plan. Make sure you 
document where any restore backups are coming from, applications 
that need reinstalled, and any other groups that need to be involved. A 
good rule of thumb is to "plan for the worst and expect the best".  

Below is a birds-eye view of the upgrade process: 

1. Upgrade the development environment. This will help you put a 
complete task list together. 

2. All prep work is completed on the production server ahead of time. 

3. On upgrade day, application testers follow their testing scripts and 
gather print screens and other documentation that will be used to 
compare to the results after the upgrade. 

4. The upgrade begins in production. The DBA performs the upgrade. 

5. Developers are notified that the upgrade is complete.  



The Best of SQLServerCentral.com – Vol.7 

334 
 

6. Developers test their applications. 

7. Application testers are notified and they test the applications using their 
testing scripts. 

8. Application testers send signed test scripts and test verification to the 
DBA. 

9. On the first business day, after the upgrade, the DBA and developers 
should come in early to field any issues that arise. It is better to fix any 
potential problems when one or two individuals are reporting the issue 
than when whole departments are experiencing the problem. 

In conclusion, this paper has documented ways to have a successful upgrade. 
The topics of discussion include successful ways to identify stakeholders, 
assemble an upgrade team, plan the upgrade, and communicate within the 
business. The best way to know when you have included all the tasks in your 
upgrade plan is to upgrade a development environment. Properly planning your 
upgrade beforehand saves time and resources on upgrade day. Every individual 
knows their place and what is expected of them ahead of time. I have used this 
method for many years and I try to continually improve the process. Since 
every environment is different, each upgrade plan will include different tasks. 
Feel free to take the template and customize it to your environment. 

References for Upgrade Template: 

• http://msdn.microsoft.com/en-us/library/ms144245.aspx  

• http://msdn.microsoft.com/en-us/library/ms144245.aspx  

• http://msdn.microsoft.com/en-us/library/ms144267.aspx  

• http://msdn.microsoft.com/en-us/library/ms144256.aspx  

• http://support.microsoft.com/kb/918992  

• http://msdn.microsoft.com/en-us/library/ms143724.aspx  

• http://msdn.microsoft.com/en-us/library/ms143686.aspx  

• http://msdn.microsoft.com/en-us/library/ms143699.aspx  

• http://msdn.microsoft.com/en-us/library/ms143699.aspx  

• http://msdn.microsoft.com/en-us/library/ms190941(SQL.90).aspx  

• http://msdn.microsoft.com/en-us/library/ms143501.aspx  

http://msdn.microsoft.com/en-us/library/ms144245.aspx�
http://msdn.microsoft.com/en-us/library/ms144245.aspx�
http://msdn.microsoft.com/en-us/library/ms144267.aspx�
http://msdn.microsoft.com/en-us/library/ms144256.aspx�
http://support.microsoft.com/kb/918992�
http://msdn.microsoft.com/en-us/library/ms143724.aspx�
http://msdn.microsoft.com/en-us/library/ms143686.aspx�
http://msdn.microsoft.com/en-us/library/ms143699.aspx�
http://msdn.microsoft.com/en-us/library/ms143699.aspx�
http://msdn.microsoft.com/en-us/library/ms190941(SQL.90).aspx�
http://msdn.microsoft.com/en-us/library/ms143501.aspx�


The Best of SQLServerCentral.com – Vol.7 

335 
 

• http://msdn.microsoft.com/en-us/library/ms143496.aspx  

Split string using XML 
By Divya Agrawal 

This article would help developers looking to split strings in a single query 
using XML. We generally use a user defined function, which you all may have 
found at many places that splits the string based on the delimiter passed. But, 
when it comes to separate the string in a single query without any help of user 
defined function we often get panic. I have found a much optimized and shorter 
way of splitting any string based on the delimiter passed. I will be using the 
power of XML to do the same. 

Let's say for example there is a string 'A,B,C,D,E' and I want to split it based on 
the delimiter ','. The first step would be to convert that string into XML, 
replacing the delimiter with some start and end XML tag. 

  Declare @xml as xml,@str as varchar(100),@delimiter as 
varchar(10) 
  SET @str='A,B,C,D,E' 
  SET @delimiter =',' 
  SET @xml = cast(('<X>'+replace(@str,@delimiter 
,'</X><X>')+'</X>') as xml)   

Here as shown above, the delimiter ',' is replaced by </X><X> tags. When you 
will see the output after converting the string into XML, you will be able to see 
the string as shown in the image below: 

 

Once the string is converted into XML you can easily query that using XQuery. 

  SELECT N.value('.', 'varchar(10)') as value FROM 
@xml.nodes('X') as T(N) 

http://msdn.microsoft.com/en-us/library/ms143496.aspx�


The Best of SQLServerCentral.com – Vol.7 

336 
 

This will give the output as a separated string as: 

 

Now, say if I have a table as having an ID column and comma separated string 
as data column. 

  DECLARE @t TABLE( ID INT IDENTITY, data VARCHAR(50)) 
  INSERT INTO @t(data) SELECT 'AA,AB,AC,AD' 
  INSERT INTO @t(data) SELECT 'BA,BB,BC'   

 

I can use the method shown above to split the string. 

  select F1.id, 
   F1.data, 
   O.splitdata 
   from 
   ( 
   select *, 
   cast('<X>'+replace(F.data,',','</X><X>')+'</X>' as XML) as 
xmlfilter 
   from @t F 
   )F1 
   cross apply 
   ( 
   select fdata.D.value('.','varchar(50)') as splitdata 
   from f1.xmlfilter.nodes('X') as fdata(D)) O   

First of all, cast the 'data' column of table @t into XML data type by replacing 
the delimiter by starting and ending tags '<X></X>'. 



The Best of SQLServerCentral.com – Vol.7 

337 
 

I have used 'CROSS APPLY' for splitting the data. APPLY clause let's you join 
a table to a table-valued-function. The APPLY clause acts like a JOIN without 
the ON clause comes in two flavors: 

CROSS and OUTER 

The OUTER APPLY clause returns all the rows on the left side (@t) whether 
they return any rows in the table-valued-function or not. The columns that the 
table-valued-function returns are null if no rows are returned. 

The CROSS APPLY only returns rows from the left side (@t) if the table-
valued-function returns rows. 

Executing the select statement mentioned above would display the following 
output: 

 

This article might have made you clear of the power of XML and a very good 
use of 'CROSS APPLY'. There are other options to split strings in a single 
query using recursive CTEs. 

Now whenever splitting of string is required you can easily cast the string into 
XML, by replacing the delimiter by XML start and end tags and then use the 
method shown above to split the string. 

  



The Best of SQLServerCentral.com – Vol.7 

338 
 

Celko’s Summer SQL Stumpers: Prime 
Numbers 
By Joe Celko 

A Prime SQL Puzzle 

I was teaching SQL classes for YAPC-10 (“Yet Another PERL Conference” 
#10) at Carnegie Mellon University at the end of June 2009.  For the record, I 
have never used PERL and had to Google up an overview before I went; it is a 
very different creature from SQL.   

One of my students asked if you could write an SQL statement to generate the 
prime numbers less than 1000 (or any other limit) that scales well.  He was 
bothered by the lack of loops in SQL and a Prime Number sieve is a common 
PERL programming exercise.  You can Google it and see an animation at 
Eratosthenes' sieve (http://www.hbmeyer.de/eratosiv.htm) and some PERL 
code at Sieve of Eratosthenes with closures 
(http://www.perlmonks.org/?node_id=276103). 

My immediate answer was “sure, but you might have to use a recursive CTE to 
replace the loop.  Later I realized that was a really bad answer; you don’t need 
recursion, just a little math.  There are two useful facts from Number Theory: 

1. The prime factors of a given number (n) cannot be greater than ceiling 
(vn).  Think about it; by definition (vn * vn)) = n, and by definition, 
ceiling (vn) >= floor(vn) so integer rounding up will be safe.  This says 
that if I look at (a * b = c) where (a < b), then I don’t have to look at (b 
* a = c), so I can start searching for prime factors with small values.   

2. All primes are of the form (6 * n ± 1), but not all number of that form 
are Primes.  For example (n = 1) gives us {5, 7} and they are both 
primes.  But for (n = 4) gives us {23, 25} where (25 = 5 * 5).  What 
this does is remove the multiples of 2 and 3 from consideration.  

Let’s get all of that into SQL statements.  Let’s start with a table for the primes:  

http://www.hbmeyer.de/eratosiv.htm�
http://www.perlmonks.org/?node_id=276103�


The Best of SQLServerCentral.com – Vol.7 

339 
 

CREATE TABLE Primes 
(p INTEGER NOT NULL PRIMARY KEY 
  CHECK (p > 1));  

Now, your puzzle is to fill the table up to some limit, say 1000 just to keep it 
simple.   

 Answers 

Let’s assume we have a table named Sequence with integers from 1 to (n) that 
we can use.  This is a common SQL programming idiom, so you don’t have to 
feel bad about using it.  

CREATE TABLE Sequence  
(seq INTEGER NOT NULL PRIMARY KEY 
CHECK (seq  > 0)); 

There are lots of ways of filling this table, but here is one I like:  

WITH Digits(i) 
AS (SELECT i 
   FROM (VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), 
(0)) AS X(i)) 
INSERT INTO Sequence(seq) 
SELECT (D3.i * 1000 + D2.i * 100 + D1.i * 10 + D0.i + 1) AS seq 
    FROM Digits AS D0, Digits AS D1, Digits AS D2, Digits AS 
D3; 

This template is easy to extend and the “.. + 1” gets rid of the zero. 

Answer #1 

For the first attempt, let’s load the Primes table with candidate numbers using 
math fact #2 from above. 

INSERT INTO Primes (p)  
(SELECT (6 * seq) + 1 
  FROM Sequence 
WHERE (6 * seq) + 1 <= 1000 
UNION ALL  
SELECT (6 * seq) - 1 
  FROM Sequence 
WHERE (6 * seq) + 1 <= 1000); 



The Best of SQLServerCentral.com – Vol.7 

340 
 

An improvement which gets rid of the UNION ALL uses a table constant:  

INSERT INTO Primes (p)  
SELECT (6 * seq) + S.switch 
  FROM Sequence 
      CROSS JOIN 
      (SELECT switch 
         FROM (VALUES (-1), (+1)) 
       AS F(switch))S  
  WHERE (6 * seq) + 1 <= 1000; 

Now we have too many rows in Primes and need to remove the non-primes.  
Now math fact #1 can come into play; test the set of numbers less than the 
square root to see if there is a factor among them.   

DELETE FROM Primes 
WHERE EXISTS 
  (SELECT *  
     FROM Primes AS P1 
    WHERE P1.p <= CEILING (SQRT (Primes.p)) 
      AND (Primes.p % P1.p) = 0); 

Answer #2 

Another way to load the candidates into Primes is to have the first few known 
primes hardwired into a query.  This is a generalization of the math fact #2, 
which dealt with multiples of only 2 and 3. 

INSERT INTO Primes (p)  
SELECT seq 
  FROM Sequence 
  WHERE 0 NOT IN (seq % 2, seq % 3, seq % 5, seq % 7, .. );  

The idea is that if we can limit the candidate set for Primes, performance will 
improve.  At the extreme, if the list of “MOD (seq, <prime>)” expressions goes 
to a value equal or higher than the upper limit we are looking at, we get the 
answer immediately. 

This is a good trick; many SQL programmers think that an IN() list can only be 
constants.  You might also want to look at how many values it can hold –It is 
larger than you think.   



The Best of SQLServerCentral.com – Vol.7 

341 
 

Another candidate pruning trick is based on the math fact that integers with 
final digits {2, 4, 6, 8, 0} are even numbers; those with final digits {5, 0} are 
multiples of five. Let’s not look at them when we build a candidate table. 

WITH Digits(i) 
AS (SELECT i 
   FROM (VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), 
(0)) AS X(i) 
   ) 
INSERT INTO Sequence(seq) 
SELECT (D3.i * 1000 + D2.i * 100 + D1.i * 10 + Units.i) 
  FROM (SELECT i 
   FROM (VALUES (1), (3), (7), (9)) AS X(i)) AS Units,  
       Digits AS D1, Digits AS D2, Digits AS D3 

Answer #3 

Another approach is to generate all of the non-primes and remove them from 
the Sequence table. 

INSERT INTO Primes (p)  
(SELECT seq FROM Sequence WHERE seq <= 1000) 
EXCEPT 
(SELECT (F1.seq * F2.seq) AS composite_nbr 
  FROM Sequence AS F1, Sequence AS F2 
WHERE F1.seq BETWEEN 2 AND CEILING (SQRT (1000))  
  AND F2.seq BETWEEN 2 AND CEILING (SQRT (1000)) 
  AND F1.seq <= F2.seq 
  AND (F1.seq * F2.seq) <= 1000)  

Obviously, the Sequence table in the left hand clause could be anyone of the 
trimmed candidate tables we previously constructed.    

What answers to do you have? As a hint, there are faster but more complicated 
algorithms, like the Sieve of Atkin and the various Wheel Sieves. 

  



The Best of SQLServerCentral.com – Vol.7 

342 
 

Basically Available, Soft State, 
Eventually Consistent 
By Phil Factor 

Many special-purpose databases don't need, or use, either the relational model 
or a declarative language such as SQL. An interesting group of these are 
sometimes called BASE systems (Basically Available, Soft State, Eventually 
consistent) and they work well with simple data models holding vast volumes 
of data. Google's BigTable, Dojo's Persevere, Amazon's Dynamo, Facebook's 
Cassandra, and a host of others. 

The 'NoSQL movement' is the latest group for developers who are working 
with or building non-relational BASE distributed databases, and particularly the 
open-source varieties. This would be no more than an interesting aside, to 
remind us that SQL-based relational databases are general-purpose tools and 
there will always be, and always has been, a thriving industry of special 
purpose database solutions. However, journalists commenting on the startup of 
the 'NoSQL Movement' cannot resist a tease. "Like the Patriots, who rebelled 
against Britain's heavy taxes, NoSQLers came to share how they had 
overthrown the tyranny of slow, expensive relational databases in favor of more 
efficient and cheaper ways of managing data." burbles Eric Lai over at 
Computerworld. 

Sometimes, when the red mist of radicalism descends, it is possible to lose 
sight of the fact that RDBMSs such as SQL Server fit closely with the 
requirements of complex commercial business systems. Your system may, in 
fact be trivial, but hold huge quantities of data. Everyone thinks they are 
working with highly complex data models. It is part of our vanity as 
developers. It leads to absurd generalisations such as "Relational databases give 
you too much. They force you to twist your object data to fit a RDBMS". The 
problem often boils down to a developer with a filofax-sized database having to 
use a grown-up RDBMS. There will always be tears in such circumstances. 

From a distance, an RDBMS such as SQL Server may seem like overkill, 
especially for a simple social-networking website. As soon as you get to the 
details, such as concurrency, consistency, scalability, and ease of refactoring 
then the idea of an open-source EAV database alternative can start to get less 
attractive. Even the idea of ditching the use of SQL soon hits problems. A 
Declarative language may seem odd to those who are only familiar with 



The Best of SQLServerCentral.com – Vol.7 

343 
 

proccedural coding, but it is a fine way to allow parallel processing. I must 
admit that occasionally, when faced with designing an IT project that deals 
with data that strays from the conventional relational model, I've flirted with 
the use of special-purpose databases, but there always comes a time when the 
niggles of the details of implementation start rising exponentially, and one 
wakes from the dream to return to the SQL-based Relational database systems 
such as SQL Server. 

Managing Free Space 
By Paul Els 

Managing Free Space can become a problem quickly, especially when you 
have to manage multiple database servers, in multiple environments, each 
server with multiple Hard Drives / LUNs. Some companies spend money on 
monitoring tools like SCOM, others try to manage it in-house by developing 
their own software/processes/reports to show free space per volume per. 

You could quickly determine Free Space per HDD/LUN by executing this tsql 
command, but it doesn’t tell you the TOTAL space per HDD/LUN: 
xp_fixeddrives. It will give you the free space in MB per drive. 

 

When I connect to a server to free up space, the first thing I do is open explorer, 
click on My Computer and arrange the columns in this order by dragging the 
columns around: 

1. Name 

2. Free Space 

3. Total Size 

This makes it easier to read. See the diagram below to get some idea. You can 
ask explorer to sort according to a column by clicking on the column, but sadly 
it doesn’t handle it well/correctly. 



The Best of SQLServerCentral.com – Vol.7 

344 
 

Warning: When checking space, be very careful not to overlook 
MB and think it is GB. 

 

Space saving techniques: 

• Find what is no longer used/needed and delete/archive it. E.g. 

• Clean out C:\Temp and C:\Windows\Temp. Windows won’t let you 
delete the temp files that are currently in use. Delete the blue $...$ files 
in the Windows folder. Drawback is you won’t be able to rollback any 
Windows Updates that was applied. I would leave this to a last resort 
for the really desperate. 



The Best of SQLServerCentral.com – Vol.7 

345 
 

 

• Find out which sql backup files (.BAK/.UBAK) are lying around and 
delete/archive the ones that are no longer needed. 

• Find out which detached database files are lying around and 
delete/archive them 

• Shrink each of the files per database to reclaim the allocated free space. 
Jonathan Kehayias wrote a pretty good article called “Monitor free 
space in the database files” to achieve just that. You can find it at: 
http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=
FileSpaceMon 

• Determine the space allocation and usage per table and then dealing 
with that. E.g. Dropping/Archiving tables that are not needed any 
longer. 

This article focuses on finding (a) detached db files and (b) old backup 
files. 

To achieve this I mainly use the DOS DIR command that searches for the 
.MDF, .NDF, .LDF, .BAK and .uBAK files. Then I compare the list of database 
files (.MDF, .NDF, .LDF) that were found against sysaltfiles to see which of 
these files aren’t in use by the instance. If you’re awake you’ll realize that this 
is only suitable for servers that has only 1 sql instance, unless you run the code 
against each sql instance. This is because when you run the code, it is like 
saying "WHICH FILES HAS THE DISKS GOT THAT ISN'T IN A 
PARTICULAR SQL INSTANCE". Ideally we would like to say: "WHICH 
FILES HAS THE DISKS GOT THAT AREN'T USED BY ANY SQL 
INSTANCE ON THIS SERVER". Still it is very handy on single instance 
servers. 

Enough talk - let’s get to the good stuff. This code is compatible with SS2000, 
2005 and 2008. 

http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=FileSpaceMon�
http://code.msdn.microsoft.com/SQLExamples/Wiki/View.aspx?title=FileSpaceMon�


The Best of SQLServerCentral.com – Vol.7 

346 
 

There is 1 pre-requisite; your SQL Server must allow DOS commands to run. 
So if you have prevented this, you’ll have to re-enable this functionality for the 
script to run. I do a quick check at the beginning of the script to determine if the 
pre-requisite is enabled. 

The script is broken into 3 Sections listed below: 

1. Gather data into temp tables 

2. Reports that pulls out what we are interested in. I created 4 reports for 
you. Look at the examples further on:  

REPORT 1: POTENTIAL SPACE SAVING (SUMMARY) 
PER VOLUME 

REPORT 2: POTENTIAL SPACE SAVING (DETAILED) 
REPORT (FOR DATABASE FILES) PER DRIVE/VOLUME 

REPORT 3: POTENTIAL SPACE SAVING (DETAILED) 
REPORT (FOR DATABASE FILES) DESC BY WASTAGE 

REPORT 4: POTENTIAL SPACE SAVING (DETAILED) 
REPORT (FOR .BAK/.UBAK FILES), FROM BIGGEST TO 
SMALLEST 

3. Discard temp tables 

Procedure to get this working: Run the code in Section 1. Then run each 
report in turn in Section 2. Run Section 3 to do the cleanups. Should you want 
to discuss anything RE this, you can contact me on: paul_els@hotmail.com. 

The three scripts are all available here: 

Examples of the output of each report: 

http://www.sqlservercentral.com/articles/Administration/67692/ 

REPORT 1: POTENTIAL SPACE SAVING (SUMMARY) PER VOLUME 

mailto:paul_els@hotmail.com�
http://www.sqlservercentral.com/articles/Administration/67692/�


The Best of SQLServerCentral.com – Vol.7 

347 
 

 

REPORT 2: POTENTIAL SPACE SAVING (DETAILED) REPORT (FOR 
DATABASE FILES) PER DRIVE/VOLUME 

 

Notice: 
It is sorted by Drive, by FileSizeInMB desc. 
Not everything that is listed can be deleted - use your own 
discretion. 

REPORT 3: POTENTIAL SPACE SAVING (DETAILED) REPORT (FOR 
DATABASE FILES) DESC BY WASTAGE 

 

Notice: It is virtually the same report as Report 2, except that the 
sort order is from most to least. 

REPORT 4: POTENTIAL SPACE SAVING (DETAILED) REPORT (FOR 
.BAK/.UBAK FILES), FROM BIGGEST TO SMALLEST 



The Best of SQLServerCentral.com – Vol.7 

348 
 

 

Summary 

I built this script to help me to quickly identify where old sql backup files and 
detached db files are lying around in order to save space by getting rid of them. 
It is very effective at achieving this goal. There is no excuse for not setting up 
maintenance jobs, but in a multi DBA environment someone else may have left 
files lying around. The code can be extended to search for other file extensions 
quite easily. Further you can even precede the code with code to determine if 
the pre-requisite is met, e.g. are DOS commands are allowed by SQL? Such 
code is available at the end of the article, which can be found here: 
http://www.sqlservercentral.com/articles/ 
Administration/67692/ 



About Red Gate
You know those annoying jobs that spoil 
your day whenever they come up?

Writing out scripts to update your 
production database, or trawling through 
code to see why it’s running so slow.

Red Gate makes tools to fix those 
problems for you. Many of our tools are 
now industry standards. In fact, at the 
last count, we had over 650,000 users.

But we try to go beyond that. We want 
to support you and the rest of the SQL 
Server and .NET communities in any 
way we can.

First, we publish a library of free books on .NET and   SQL Server. 
You’re reading one of them now. You can get dozens more from   
www.red-gate.com/books

Second, we commission and edit rigorously accurate articles from 
experts on the front line of application and database development. We 
publish them in our online journal Simple Talk, which is read by millions 
of technology professionals each year.

On SQL Server Central, we host the largest SQL Server 
community in the world. As well as lively forums, it puts 
out a daily dose of distilled SQL Server know-how 
through its newsletter, which now has nearly a million 
subscribers (and counting).

Third, we organize and sponsor events (about 50,000 
of you came to them last year), including SQL in the 
City, a free event for SQL Server users in the US  
and Europe.

So, if you want more free books and articles, or  
to get sponsorship, or to try some tools that 
make your life easier, then head over to   
www.red-gate.com

http://www.red-gate.com/community/books/
https://www.simple-talk.com/
http://www.sqlservercentral.com/
http://sqlinthecity.red-gate.com/
http://sqlinthecity.red-gate.com/
http://www.red-gate.com/

	Table of Contents
	Introduction
	SQL Server Preproduction Tasks
	Scope: The drastic caveat with Logon Triggers 
	The Date Dimension in Analysis Services
	SCOME - Centralize Monitoring with ASP.NET - Part 1
	Monitoring Changes in Your Database Using DDL Triggers
	Imaginative Auditing with Rollback (Undo) and RollForward (Redo) Part I
	9 Things to Do When You Inherit a Database 
	Cursors for T-SQL Beginners
	DAC - What to Execute when Connected?
	Getting a Clue about Your Databases
	Ordering Tables to Preserve Referential Integrity
	Creating a recycle bin for SQL Server 2005\2008
	Using SQL Profiler to Resolve Deadlocks in SQL Server
	What SQL Statements Are Currently Executing?
	Duplicate Records using SQLCMD
	Automating Excel from SQL Server
	Moving Indexes
	On Indexes and Views
	Missing Indexes in SQL Server 2005
	Using the Script Component with Multiple Outputs
	SSIS and Stored procedures using temp tables
	SSIS Custom Error Handling
	Simple Steps to Creating SSIS Package Configuration File
	Using Checkpoints in SSIS (Part 1)
	Reporting Services: Read Data from SSAS and SQL Server in One Dataset
	SQL Server 2008 Mirroring Testing
	On-Call Duties
	Configuring Replication for Partitioned Tables Using T-SQL
	Performance Implications of Database Snapshots
	Filtering Unneeded Dimension Members in PerformancePoint Filters
	Powering up DTS with PerlDTS
	Loading Data with Powershell
	Add Styles to Your Reporting Services Reports
	Configuring Kerberos Authentication
	Use Operations Manager to Monitor Your SQL Agent Jobs
	Oracle for the SQL Server Guy - Instances and Databases
	Default trace - A Beginner's Guide
	Streaming Data into SQL Server 2008 from an Application
	SQL Server 2008 and Data Compression
	The FILESTREAM Data Type in SQL Server 2008
	Investigating the new Spatial Types in SQL Server 2008 - Part 1 
	SQL Server 2008 SSMS Enhancements - Debugging Support
	Deploying Scripts with SQLCMD
	Real-Time Tracking of Tempdb Utilization Through Reporting Services
	Transparent Data Encryption (TDE) SQL Server 2008
	Introduction to DML Triggers
	Troubleshooting
	SQL Server 2005 Paging the Holy Grail
	Hierarchies in SQL
	ROW_NUMBER(): An Efficient Alternative to Subqueries
	There Must Be 15 Ways to Lose Your Cursors... part 1, Introduction
	Generating Insert Statements
	Dynamic SQL Merge
	Test-Driven Development of T-SQL Code
	Automating tests for T-SQL code
	Database Server Upgrades the Plan, the Template, and the Task List
	Split string using XML
	Celko’s Summer SQL Stumpers: Prime Numbers
	Basically Available, Soft State, Eventually Consistent
	Managing Free Space



